首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical results for second-order wave run-up around a large diameter vertical circular cylinder are compared to results of 22 laboratory experiments conducted in regular nonlinear waves. In general, the second-order theory explains a significant portion of the nonlinear wave run-up distribution measured at all angles around the cylinder. At the front of the cylinder, for example, measured maximum run-up exceeds linear theory by 44% on average but exceeds the nonlinear theory by only 11% on average. In some cases, both measured run-up and the second-order theory exceed the linear prediction by more than 50%. Similar results are found at the rear of the cylinder where the second-order theory predicts a large increase in wave amplitude for cases where the linear diffraction theory predicts little or no increase. Overall, the nonlinear diffraction theory is found to be valid for the same relative depth and wave steepness conditions applicable to Stokes second-order plane-wave theory. In the last section of the paper, design curves are presented for estimating the maximum second-order wave run-up for a wide range of conditions in terms of the relative depth, relative cylinder size, and wave steepness.  相似文献   

2.
Second-order wave forces on a large diameter vertical circular cylinder, computed according to a semi-analytic nonlinear diffraction theory, are compared to results of 22 laboratory experiments with regular waves. In general, predicted forces agree quite well with measured forces. In most tests, both measured and predicted maximum forces exceeded linear theory by 5 to 15%. In a few cases, however, the measured forces were less than those predicted by linear theory, in contrast to the second-order predictions. It is shown that these results are related to the phasing of various linear and nonlinear wave force components, and are consistent with those obtained by other investigators.  相似文献   

3.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

4.
5.
S.Y. Boo   《Ocean Engineering》2006,33(2):219-233
Wave forces on a vertical truncated circular cylinder in Stokes waves with the wave slopes ranging from 0.06 to 0.24, are measured in a wave tank. The higher harmonic wave forces are compared with the available values from theories of the FNV (Faltisen–Newman–Vinje) model and Varyani solution. The first harmonic horizontal forces measured are much larger than the theoretical values from the FNV model, while the first harmonic vertical forces are well predicted by the Varyani theory. It was also found that the FNV model significantly overpredicts the second harmonic horizontal forces in high frequency waves, but under predicts the third harmonic forces. The differences between the actual measurement and the theory, in the second and third harmonic horizontal forces, become smaller at low wave frequencies as the wave slope increases. In addition, the transverse instabilities in the incoming waves with high wave slope were observed, which is due to the nonlinear modulation. Measurements were, thus, carried out before the instability occurred.  相似文献   

6.
本文采用非静压模型NHWAVE建立高精度三维波浪数值水槽,对多向聚焦波作用下透水和不透水潜堤消波特性进行数值模拟研究。通过计算结果与实验数据的对比,验证了该模型模拟多向聚焦波产生传播及多孔介质内流动的能力,进一步考虑了有效波高、水深、谱峰周期和传播角度等因素对潜堤消波特性的影响。结果表明:潜堤对多向聚焦波的最大波幅、最大水位、沿水深平均最大流速和波能均有显著消减作用,且透水潜堤因孔隙介质的存在消波性能更好。随着有效波高增大,堤顶处波浪破碎点前移,不透水潜堤消波性能受波高影响较大。水深越大,潜堤消波性能越低。透水潜堤对长周期波浪消减效果较差。传播角度越小,聚焦位置处波幅越大,波浪非线性作用越强。研究结果可为我们进一步保护沿海设施免受极端海洋环境的影响提供一定的参考  相似文献   

7.
8.
This paper presents a method of estimating wave forces acting on a submerged horizontal circular cylinder fixed in oblique waves.The experiments show that drag and inertia coefficients in beam sea are available for calculating the wave forces in oblique waves.Wave forces exerted on a vertical circular cylinder in deep waves are also investigated.The experimental results show that wave forces acting on the vertical cylinder coincide approximately with hydrodynamic forces acting on a submerged circular cylinder in an oscillating fluid.  相似文献   

9.
Local scour around a submerged vertical circular cylinder in steady currents was studied both experimentally and numerically. The physical experiments were conducted for two different cylinder diameters with a range of cylinder height-to-diameter ratios. Transient scour depth at the stagnation point (upstream edge) of the cylinder was measured using the so-called conductivity scour probes. Three-dimensional (3D) seabed topography around each model cylinder was measured using a laser profiler. The effect of the height-to-diameter ratio on the scour depth was investigated. The experimental results show that the scour depth at the stagnation point is independent on cylinder height-to-diameter ratio when the later is smaller than 2. The increase rate of equilibrium scour depth with cylinder height increases with an increase in Shields parameter.  相似文献   

10.
严开  邹志利  马良 《海洋工程》2018,36(2):38-46
为了研究真实海洋表面马蹄波特性以及对建筑物的作用,通过物理模型实验研究了马蹄波的波形特征参数以及马蹄波对圆柱体的作用。实验中通过对浪高仪采集的波面升高时间历程曲线进行分析得出了不同水深情况下马蹄波的垂向几何特征,并通过快速傅里叶变换得出了马蹄波波幅谱的特征,研究了马蹄波各组成波波幅沿空间的变化从而得出了圆柱存在对马蹄波演化的影响,同时给出马蹄波绕射形成的波面分布和不同频率谐波在圆柱周围的分布,讨论了马蹄波不同于Stokes波对圆柱作用的特征。结果表明,马蹄波波形受水深影响较大,水深越浅,马蹄波的波面形状越接近椭圆余弦波。圆柱体的存在干扰了马蹄波不稳定的增长,使其在接近圆柱时呈下降趋势,导致不稳定幅值最大值的位置提前并且出现在偏离圆柱迎浪点的侧表面,从而使圆柱受到侧向力的作用。  相似文献   

11.
圆筒形水工建筑物波浪荷工的试验研究   总被引:2,自引:1,他引:2  
在圆筒形水工建筑物的波压力测定试验基础上 ,通过多种波压力理论计算方法进行计算、比较和分析 ,采用半经验半理论方法 ,探讨性地提出一种适合圆筒形水工建筑物波浪荷载的分布及计算方法 ,该法表现形式简单 ,计算结果接近实测值 ,可为相关的工程设计提供参考依据  相似文献   

12.
基于局部冲刷研究的大型圆柱周围波浪特性分析   总被引:2,自引:0,他引:2  
波浪环境下,大型圆柱的存在改变了周围原有波浪条件,直接导致局部冲刷。利用MacCamy和Fuchs的绕射理论对相对柱径较大(0.15相似文献   

13.
基于物理模型试验,探究畸形波和不规则波作用下浮体系泊张力差异问题。讨论相对波高、相对周期和畸形波参数α1对系泊张力的影响。结果显示:畸形波参数α1和浮体系泊张力显著相关。在α1=2.0~2.83范围内,畸形波作用下迎浪侧系泊张力最大值可达不规则波作用的1.9倍。在相对波高Hs/d=0.032~0.097范围内,畸形波作用下迎浪侧系泊张力最大值显著大于不规则波的作用结果,但畸形波和不规则波对应的1/3值及平均值几乎一致。就相对周期影响而言,迎浪侧系泊张力最大差别出现在谱峰周期Tp<T0p范围内。频域方面采用小波分析方法讨论畸形波和不规则波作用下浮体系泊张力时频谱特征,两种波浪作用下系泊张力时频特征有显著差别。  相似文献   

14.
通过开展物理模型试验,进行不规则波作用下不同间距大直径圆筒防波堤的波峰压力分布规律研究,分析了圆筒相对间距、相对水深、波陡等主要影响因素对圆筒波压力的影响规律,并通过波压力试验值与各家理论公式计算值的比较,进行不同间距圆筒波压力的计算方法研究。基于直立墙结构和大尺度孤立墩柱结构波压力公式给出修正系数以及横向衰减函数的拟合公式,用以计算圆筒周身不同位置处的波压力,从而为工程设计和理论研究提供参考。  相似文献   

15.
在现有的矩形方箱和透空结构的基础上,提出一种由立管和水平板组合而成的消浪结构。利用波浪水槽物理模型试验,测试该结构在单向规则波作用下的消浪性能。分别探讨了其单排布置和双排布置时的透射系数随结构宽度、相对吃水深 度、相对间距等因素的变化规律。结果表明:单排布置时,透射系数随结构宽度的增大而减小,总体上随吃水深度的增大而减小;双排布置时,透射系数相对总宽度相同的单体结构减少 10 %,透射系数随吃水深度的增大而减小,前后间距对透射系数的影响不明显。对试验结果数据进行曲线拟合,得到了透射系数关于各影响因素的函数表达式。  相似文献   

16.
The nonlinear wave interaction problem with a vertical plate of finite length is considered. Reference is made to previous experimental and numerical studies reported in Molin et al. [1–3], where it was shown that the observed run-up phenomena are due to third-order (or tertiary) interactions between the incoming and reflected wave systems. In this paper a new numerical model is proposed where the presence of lateral walls is relaxed. Run-up computations, with and without confinement effects, are compared. It is found that, in the model tests reported in Molin et al. [3], the effect of confinement was relatively small. The time-varying and steady wave loads which are exerted on the plate are also investigated. The dedicated numerical predictions show that as the wave steepness is increased the response amplitude operators of the time-varying loads first increase, reach a maximum and then decrease dramatically, due to phasing effects.  相似文献   

17.
The purpose of this research work is to study the effect of specific surface s, the fluid–solid contact surface per volume unit, on the wave energy dissipation by porous structures consisting in dense arrays of emergent vertical cylinders. Experiments have been carried out in a 10 m long wave flume. Three cylinder diameters D are considered in order to study the effects of the specific surface while keeping the porosity constant. In a first series, the length of the porous zone is kept constant for the three cylinder diameters tested. The measurements, which include various wave steepness conditions, demonstrate the role of specific surface s on both wave attenuation and interference processes. The larger the specific surface is, the stronger the wave damping is. Damping is found to be almost proportional to 1/D when laminar, turbulent and inertial effects are of same order. Results are compared to numerical calculations based on either a constant rate of wave damping within the porous medium per unit wavelength or a quadratic damping developed using a force expression based on the work of [26]. This latter model, calibrated with drag and inertia coefficients, shows a good agreement with measurements. In a second series, both porous length and water depth are kept proportional to the cylinder diameter for the three diameters. Scale effects are then discussed and underline the importance of the flow regime within the porous medium.  相似文献   

18.
The wave forces and moments on and the water surface fluctuations around a vertical circular cylinder encircled by a perforated square caisson were experimentally investigated. The porosity of the outer square caisson was varied from 4.24 to 14.58%. The in-line wave forces on the inner vertical cylinder are influenced by changing the porosity of the outer caisson, whereas the variations in the water surface fluctuations are less influenced in this porosity range. The in-line moment on the vertical cylinder is relatively less sensitive when the porosity is increased from 4.24 to 8.75%, but varies substantially when it is increased from 8.75 to 14.58%. The force and moment ratio (i.e. the ratio of the force or moment on the vertical cylinder, when it is encircled by the perforated caisson to the force or moment on the cylinder without any protection around it) reduces with increased wave height, H, and wave length, L, whereas the wave height ratio (ratio of the wave height at a point in the vicinity of the structure to the incident wave height) is less sensitive for the varying H and L. A new non-dimensional parameter, p1.5 (D/L)/(H/d), is introduced to predict the in-line force and moment on the inner vertical cylinder, where d is local water depth, D is the diameter of the inner cylinder and p is the porosity of the outer caisson in percentage. Simple predictive equations for forces, moments and water surface fluctuations are provided.  相似文献   

19.
王科  张犀  高鑫 《中国海洋工程》2011,25(4):699-708
The interaction between wave and horizontal and vertical plates is investigated by the boundary element method,and the relations of wave exciting force with plate thickness,submergence and length are obtained.It is found that:1) The efficient wave exciting force exists while plate submergence is less than 0.5 m,and the plate is very thin with order O(0.005 m).2) The maximum heave wave exciting force exists,and it is the main factor for surface and submerged horizontal plate while the roll force can be ignored.3) The maximum sway wave exciting force exists,it is the main factor for surface or submerged vertical plate,and the roll force is about 20 times of horizontal plate.  相似文献   

20.
开孔工字板组合式防波堤是基于透空板式防波堤的一种新型结构形式,具有自重轻、材料省的特点。为充分了解新型开孔组合式防波堤的受力特性,基于室内水槽物理模型试验,测量新型开孔工字板组合式防波堤上的波压力与结构总力,研究相对波高H/d、相对波长L/B对该新型防波堤结构表面压力的影响,讨论了该新型防波堤所受波浪力荷载与相对波高H/d、相对波长L/B的关系。结果表明,相对波高H/d是决定新型防波堤结构表面波压力和结构总力的主要影响因素。该新型防波堤结构波浪力荷载以垂直方向受力为主,新型防波堤结构所受竖向总力远大于水平总力,最大可达到15倍。新型防波堤水平总力随相对波长L/B先增大后趋于稳定。相对波长L/B=3.617是防波堤结构水平总力变化幅度的分界点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号