首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Centrifuge modeling of a dry sandy slope response to earthquake loading   总被引:3,自引:0,他引:3  
This paper presents results of a series of centrifuge models of dry, sandy slopes excited by earthquakes and cyclic waves under 50g centrifugal acceleration to investigate the dynamic performance of slopes. Test results of four model slopes with different profiles stimulated by the adjusted El Centro earthquakes with various peak accelerations reveal the response amplification mechanism of the slope. By calculating the response spectra of recorded acceleration time histories, it was observed that the different frequency contents of the input event were amplified to different degrees. The model slope showed a completely different response under the cyclic wave with a constant frequency and amplitude in that the spectral amplification factor curves had no prominent peak values. These findings suggest that dynamic centrifuge tests excited with a real ground motion are able to better reflect the response characteristics of a slope rather than the tests with cyclic loading.  相似文献   

2.
第四纪地层中断层同震错动行为的离心机试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
运用试验地球物理学的原理和方法来研究认识当地震发生时在第四纪地层中断层同震错动行为的有关特征,为减轻地震灾害相关问题进行基础研究.原创了在试验模型中预制断层的方法来模拟第四纪地层中存在的断层,用离心机模拟试验研究第四纪地层中不同活动年代、不同上断点深度断层的同震错动行为,特别是地表破坏(地表形变和破裂)特征,取得了新的明确认识,给出了不同场地条件下建设工程应对地震地表破裂造成直接破坏的避让距离.因此这项工作不但有着基础科研意义,而且具有对工程建设防震减灾的实际应用意义.  相似文献   

3.
Earthquake fault ruptures may emerge at the ground surface causing large differential movements. When fault ruptures emerge at or adjacent to the position of existing foundations, significant damage can be caused. However, the study of recent faulting events revealed that in some circumstances the fault-rupture emergence is deflected by the presence of buildings leaving the buildings intact. A centrifuge modelling study has been conducted to investigate how normal faults interact with strip foundations which run parallel to the strike direction. The study confirms that fault rupture may be deviated by the presence of the foundation so that the foundation is protected from the most serious differential movements. However, whilst the fault propagates to the soil surface the foundation has to withstand initial movements before the final fault rupture emergence mechanism is activated. The centrifuge results suggest that it is the bearing pressure of the foundation which causes the deviation of the fault rather than the kinematic restraint of the foundation. The interaction between the earthquake fault and the shallow foundation depends on the foundation bearing pressure, foundation width, soil depth and position of the fault relative to the foundation and these aspects should be considered in design. Results from the tests are used to validate a series of finite element analyses as reported in an accompanying paper.  相似文献   

4.
The propagation of reverse faults through soil to the ground surface has been observed to cause damage to surface infrastructure. However, the interaction between a fault propagating through a sand layer and a shallow foundation can be beneficial for heavily loaded foundations by causing deviation of the fault away from the foundation. This was studied in a series of centrifuge model tests in which reverse faults of dip angle 60° (at bedrock level) were initiated through a sand layer, close to shallow foundations. The tests revealed subtle interaction between the fault and the shallow foundation so that the foundation and soil response depend on the foundation loading, position, breadth and flexibility. Heavily loaded rigid foundations appeared best able to deviate fault rupture away from the foundation but this deviation could be associated with significant foundation rotations. However, a lightly loaded foundation was unable to deviate a reverse fault and the fault emerged beneath the foundation. This led to gapping beneath the foundation as well as significant rotations and may cause severe structural distress. As well as providing insight into the mechanisms of behaviour, the data from the tests is used to validate finite element analyses in a separate article.  相似文献   

5.
Although batter pile foundations are widely used in civil engineering structures, their behavior under seismic loadings is not yet thoroughly understood. This paper provides insights about the differences in the behavior of batter and vertical piles under seismic soil-pile-superstructure interaction. An experimental dynamic centrifuge program is presented, where the influences of the base shaking signal and the height of the gravity center of the superstructure are investigated. Various seismic responses are analyzed (displacement and rotation of the pile cap, total shear force at the pile cap level, overturning moment, residual bending moment, total bending moment and axial forces in piles). It is found that in certain cases batter piles play a beneficial role on the seismic behavior of the pile foundation system. The performance of batter piles depends not only on the characteristics of the earthquakes (frequency content and amplitude) but also on the type of superstructures they support. This novel experimental work provides a new experimental database to better understand the behavior of batter pile foundations in seismic regions.  相似文献   

6.
A series of 2-D centrifuge modeling tests with an in-flight shaker were carried out in order to model both the deformation characteristics of backfill and the seismic responses of caisson-type walls embedded in soils with various permeabilities. The rotational and translational modes were found to be in phase or various degrees out of phase with each other for quay walls embedded in soils with varying permeabilities. The alternative pumping and suction processes in excess pore water pressure that are caused by a wall's vibrations increase the level of damage because large amounts of backfill are forcedly leaked into the sea. The test results show that the rotational mode makes the dominant contribution to the changes in excess pore water pressure and in the earth pressure in the deep layers of soil, but the translational mode makes the dominant contribution to these pressures in the shallow layers. The average shear wave velocities were found to decrease rapidly to values as low as 1/8th of the velocity measured at the beginning of shaking.  相似文献   

7.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

8.
Two centrifuge tests were designed to improve the understanding the response of liquefied sandy slopes beyond initial liquefaction. A distinctive dilative behavior of the soil was observed near the slope where static shear stresses are present. The corresponding drops in the piezometric records and simultaneous negative upslope spikes in the acceleration records were measured in the transducer raw data. This dilative response became stronger as the input acceleration increased and tends to limit the downslope accumulation and thus reducing the permanent lateral displacements. Therefore, the maximum permanent displacement was smaller in the model with the larger input motion, because it developed a stronger dilative response. The dilative response was not observed away from the slope, where no static shear stresses are present.  相似文献   

9.
Shallow foundations supporting building structures might be loaded well into their nonlinear range during intense earthquake loading. The nonlinearity of the soil may act as an energy dissipation mechanism, potentially reducing shaking demands exerted on the building. This nonlinearity, however, may result in permanent deformations that also cause damage to the building. Five series of tests on a large centrifuge, including 40 models of shear wall footings, were performed to study the nonlinear load-deformation characteristics during cyclic and earthquake loading. Footing dimensions, depth of embedment, wall weight, initial static vertical factor of safety, soil density, and soil type (dry sand and saturated clay) were systematically varied. The moment capacity was not observed to degrade with cycling, but due to the deformed shape of the footing–soil interface and uplift associated with large rotations, stiffness degradation was observed. Permanent deformations beneath the footing continue to accumulate with the number of cycles of loading, though the rate of accumulation of settlement decreases as the footing embeds itself.  相似文献   

10.
反射地震零偏移距逆时偏移方法用于隧道超前预报   总被引:16,自引:2,他引:16       下载免费PDF全文
为了高效快速地采集到隧道开挖前方的反射地震数据并提供实时的隧道前方地质超前预报,本文提出一种基于波动方程逆时偏移原理的隧道地质超前预报方法.为了获得与该超前预报方法相适应的地震数据,本文还提出适用于隧道内有限空间环境下的PMZO(Plus Minus Zero Offset)反射地震采集方案.本研究根据理论地震记录分析了隧道中零偏移距地震记录反射波的时距关系和振幅特征,讨论了隧道中地震记录的解释方法,利用含多条断层破碎带的地质模型,模拟了基于逆时偏移算法的实时隧道地质超前预报.数值计算结果证明,PMZO数据采集方案以及逆时偏移算法可以获得隧道开挖前方地质构造的准确成像.  相似文献   

11.
The seismic risk is fairly high in Hong Kong even though it is located in an intreplate area with low to moderate seismicity. This is because of its high seismic vulnerability due to the presence of many steep loose fill slopes with a marginal static factor of safety, and a high consequence ‘value’ as a result of the dense population and intense economic activity in Hong Kong. In order to investigate the seismic stability and potential flow liquefaction of loose fill slopes, dynamic centrifuge tests in uni-axial and bi-axial directions were performed on saturated model embankments made of loose completely decomposed granite (CDG). Three windowed sinusoidal waves with peak shaking amplitudes ranging from 0.08 g to 0.3 g (prototype scale) were adopted. During the strong uni-axial shaking of 0.3 g, the measured maximum excess pore pressure ratios ranged from 0.70 to 0.85 and a relatively small crest settlement of 5.8 mm (0.22 m prototype) was measured. No soil liquefaction or flow slides were observed. Comparing the results between the strong uni-axial and bi-axial shaking, the maximum pore pressure ratios measured from the bi-axial test varied from 0.75 to 0.87, which were marginally larger than those obtained from the uni-axial test. Although the measured crest settlement during the bi-axial shaking was about 27% larger than that of the uni-axial test, soil liquefaction and flow slide did not occur. These test results suggest that loose CDG fill slopes are likely to be stable under the proposed design PGA ranging from 0.08 to 0.11 g in Hong Kong.  相似文献   

12.
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated.  相似文献   

13.
Recent major seismic events, such as the Chi-Chi (1999) and the Wenchuan (2008) earthquakes occurred in Taiwan and China, have offered a variety of case histories on the performance of structures subjected to reverse faulting–induced deformation. A novel faulting mitigation method has recently been proposed, introducing a soft deformable wall barrier in order to divert the fault rupture away from the structure. This can be materialized by constructing a thick diaphragm-type soil bentonite wall (SBW) between the structure and the fault rupture path. The paper investigates the key parameters in designing such a SBW, aiming to mitigate the fault rupture hazard on shallow foundations. The paper employs a thoroughly validated finite element analysis methodology to explore the efficiency of a weak SBW barrier in protecting slab foundations from large tectonic deformation due to reverse faulting. A dimensional analysis is conducted in order to generalize the validity of the derived conclusions. The dimensionless formulation is then used to conduct a detailed parametric study, exploring the effect of SBW thickness w/H, depth HSBWl/H, and shear strength τsoil/τSBW, as well as the bedrock fault offset h/H, foundation surcharge load q/ρgB, and fault outcrop location s/B. It is shown that the wall thickness, depth, and shear strength should be designed on the basis of the magnitude of the bedrock fault offset, the location of the fault relative to the structure, and the shear strength of the soil. The efficiency of the weak barrier is improved using lower strength and stiffness material compared to the alluvium. A simplified preliminary design methodology is proposed, and presented in the form of a flowchart.  相似文献   

14.
The construction of large offshore wind turbines in seismic active regions has great demand on the design of foundations. The occurrence of soil liquefaction under seismic motion will affect the stability of the foundations and consequently the operation of the turbines. In this study, a group of earthquake centrifuge tests was performed on wind turbine models with gravity and monopile foundations, respectively, to exam their seismic response. It was found that the seismic behavior of models was quite different in the dry or saturated conditions. Each type of foundation exhibited distinct response to the earthquake loading, especially in the offshore environment. In the supplementary tests, several remediation methods were evaluated in order to mitigate the relatively large lateral displacement of pile foundation (by fixed-end pile and multi-pile foundation) and excessive settlement of gravity foundation (by densification, stone column, and cementation techniques).  相似文献   

15.
Three dynamic centrifuge model tests were conducted at an acceleration of 80g to simulate the seismic responses of level sand deposits: an intra-silt layer was embedded in two of these sand deposits at different depths. The effects of a low-permeability intra-silt layer on the build-up and dissipation of excess pore-water pressure, surface settlement, and the related liquefaction mechanism were investigated. An intra-silt layer modifies the seismic response of the sand deposit, reduces the extent of liquefaction, and thus decreases surface settlement. The depth of the intra-silt layer is one of the factors influencing the seismic responses of the sand deposits. The magnitude of the surface settlement is proportional to the degree of liquefaction in the sand deposit. The high positive hydraulic gradients appearing in both the intra-silt layer and in the sand deposit lying on the intra-silt layer can break a thinner or weaker top layer and result in sand boiling. Our visual animation of the ratio of the excess pore-water pressure and the lateral displacement revealed that the liquefaction front travels upward during shaking and the solidification front travels upward after shaking.  相似文献   

16.
盐下构造速度建模与逆时偏移成像研究及应用   总被引:1,自引:1,他引:1       下载免费PDF全文
盐丘速度建模及成像是盐下油气藏勘探有关技术瓶颈问题.盐下构造由于盐丘速度与围岩地层差异大,且厚度横向变化大,造成地震波场复杂及时间域构造畸变.针对H区复杂盐丘的地质特征,通过技术创新重新认识盐下油气藏.针对盐丘速度建模的难点,提出了"多信息约束层控实体建模技术",采用序贯高斯模拟及克里金趋势约束速度反演方法,较好解决了盐下速度异常问题,大大提高了速度建模的精度;针对盐下复杂构造成像, 基于有限差分方法研究了精确且高效的差分格式逆时波场外推算法.基于GPU/CPU协同平台,将波场延拓通过GPU实现.采用逆时偏移深度域成像技术,使高角度反射界面、甚至超过90°盐丘侧翼界面的反射波精确成像.通过盐丘理论模型试算验证算法及方法的正确性.上述方法解决了盐丘速度建模精度问题、盐丘侧翼的回转构造成像问题,实现了对盐丘边界及盐丘侧翼的准确归位.消除了速度异常造成的时间域构造畸变,使盐下地层在深度域能够准确成像.  相似文献   

17.
洪洞临汾大震震源断层的相互作用和地震趋势分析   总被引:1,自引:0,他引:1  
山西临汾地区1303年和1695年发生了洪洞(M8)和临汾(M7 3/4)两次相距最近特大地震。地震所在区域至今仍有持续不断的小震活动。我们根据1670次中、小地震精确震源定位结果和149个小地震的震源机制。通过震源三维空间分布和震源机制解的分析,认为洪洞地震和临汾地震的强相互作用是解锁,因此导致临汾地震提前发生;此外,2者之间还存在弱相互作用,并且和随机发生的地震达到一种平衡。2次大地震对区域所积累的应变基本释放完毕,难以再形成与应力场一致的大破裂,使得临汾地区连续的地震活动以中小地震的形式体现,连续300多年都没有5级以上地震发生。估计今后临汾地区的这种低水平活动将继续下去,发展趋势是安全的。  相似文献   

18.
Faulting is one type of permanent ground displacement (PGD); tunnels are at the risk of damage when they are susceptible to faulting. The present study proposes an experimental approach to create the fragility curves for shallow segmental tunnels in alluvial deposits subjected to normal surface faulting. Centrifuge testing was carried out in order to achieve this purpose. The proposed approach allows evaluation of new fragility curves considering the distinctive features of tunnel geometry and fault specifications. The comparison between the new fragility curves and the existing empirical curves was discussed as well. Compared to tunnels in rock, tunnels in alluvial deposits are more susceptible to failure because of different mechanisms of collapse into tunnel at large exerted PGD.  相似文献   

19.
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI‘s 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results.  相似文献   

20.
Long-term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have clearly demonstrated that a tunnel, which exhibits rather flexible nature within its surrounding soil, follows closely the motion of the soil mass during an earthquake. Therefore, coating a tunnel with a soft material will be a possible measure for minimizing damage to tunnels. This paper provides a clear perspective on the feasibility of this measure by using simple solutions to idealized problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号