首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quasi-three-dimensional particle tracking model is developed to characterize the spatial and temporal effects of advection, molecular diffusion, Taylor dispersion, fracture wall deposition, matrix diffusion, and co-transport processes on two discrete plumes (suspended monodisperse or polydisperse colloids and dissolved contaminants) flowing through a variable aperture fracture situated in a porous medium. Contaminants travel by advection and diffusion and may sorb onto fracture walls and colloid particles, as well as diffuse into and sorb onto the surrounding porous rock matrix. A kinetic isotherm describes contaminant sorption onto colloids and sorbed contaminants assume the unique transport properties of colloids. Sorption of the contaminants that have diffused into the matrix is governed by a first-order kinetic reaction. Colloids travel by advection and diffusion and may attach onto fracture walls; however, they do not penetrate the rock matrix. A probabilistic form of the Boltzmann law describes filtration of both colloids and contaminants on fracture walls. Ensemble-averaged breakthrough curves of many fracture realizations are used to compare arrival times of colloid and contaminant plumes at the fracture outlet. Results show that the presence of colloids enhances contaminant transport (decreased residence times) while matrix diffusion and sorption onto fracture walls retard the transport of contaminants. Model simulations with the polydisperse colloids show increased effects of co-transport processes.  相似文献   

2.
Numerical experiments are conducted to examine the effects of gravity on monodisperse and polydisperse colloid transport in water-saturated fractures with uniform aperture. Dense colloids travel in water-saturated fractures by advection and diffusion while subject to the influence of gravity. Colloids are assumed to neither attach onto the fracture walls nor penetrate the rock matrix based on the assumptions that they are inert and their size is larger than the pore size of the surrounding solid matrix. Both the size distribution of a colloid plume and colloid density are shown to be significant factors impacting their transport when gravitational forces are important. A constant-spatial-step particle-tracking code simulates colloid plumes with increasing densities transporting in water-saturated fractures while accounting for three forces acting on each particle: a deterministic advective force due to the Poiseuille flow field within the fracture, a random force caused by Brownian diffusion, and the gravitational force. Integer angles of fracture orientation with respect to the horizontal ranging from ±90° are considered: three lognormally distributed colloid plumes with mean particle size of 1 μm (averaged on a volumetric basis) and standard deviation of 0.6, 1.2 and 1.8 μm are examined. Colloid plumes are assigned densities of 1.25, 1.5, 1.75 and 2.0 g/cm3. The first four spatial moments and the first two temporal moments are estimated as functions of fracture orientation angle and colloid density. Several snapshots of colloid plumes in fractures of different orientations are presented. In all cases, larger particles tend to spread over wider sections of the fracture in the flow direction, but smaller particles can travel faster or slower than larger particles depending on fracture orientation angle.  相似文献   

3.
4.
The laser‐induced breakdown detection (LIBD) is a very sensitive method for the direct detection of colloids based on the plasma generation on single particles by a focused, pulsed laser beam and the detection of the produced shock wave or plasma light emission. For the determination of colloid sizes the light emission of single plasmas is detected by a microscope CCD‐camera system. With known mean particle diameter and breakdown probability the particle concentration can be calculated. The application of the LIBD to monitor the change of colloid concentration and size during the purification steps of drinking water at the Bodensee (Lake Constance, Germany) water purification plant is shown. The breakdown probability, correlating to colloid number density, decreases with every purification step. By addition of FeCl3 as a precipitating agent and with an additional filtration step, not only suspended matter, but also colloids are effectively removed. After this process a remaining particle concentration of 50 ng/L and a mean particle diameter of 27 nm are found.  相似文献   

5.
Although understanding colloid composition has been frequently cited as essential to predicting contaminant transport in natural waters, most current methods to collect and identify colloid composition chemically alter the colloids prior to analysis and fail to identify colloid mineralogy and organic components. This paper presents a new, low‐cost method employing attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) to identify colloids including organic material in concentrated suspensions. The concentration method employing tangential ultrafiltration at a steady temperature prevents redistribution of dissolved phase and suspended sediments into the colloidal fraction through post‐sampling reactions. ATR‐FTIR allows for direct analysis of concentrated suspensions rather than requiring drying that may alter composition in the colloidal phase, for example, by precipitating carbonates in samples from karst waters. The ability of this technique to monitor variation in colloidal composition is demonstrated through the examination of colloids under two different flow conditions in a karst aquifer and the West Branch of the Susquehanna River in Central Pennsylvania. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
《Advances in water resources》2007,30(6-7):1432-1454
This paper examines the non-perturbed deposition and re-entrainment dynamics of biological and non-biological colloids in porous media in the presence of an energy barrier to deposition at the grain surface. Deposition and re-entrainment rate coefficients were determined from numerical simulation of breakthrough–elution behavior and the profiles of retained colloids. We present composite trends from original and previously published data for biological and non-biological colloids which demonstrate that hydrodynamic drag mitigates deposition and drives re-entrainment of both biological and non-biological colloids in the presence of an energy barrier under non-perturbed conditions. Original data is presented for two sizes of colloids (1.1 and 5.7 μm microspheres) under a variety of ionic strength and fluid velocity conditions to examine the torque balance governing re-entrainment of colloids attached to the grain surfaces. The analysis indicates that in the presence of an energy barrier to deposition, hydrodynamic drag may influence deposition and re-entrainment of colloids associated directly with the grain surface via primary energy minima. However, the hydrodynamic field would also be expected to influence deposition and re-entrainment of colloids associated with the surface via secondary energy minima. Hence, the observed influences of fluid velocity are consistent with colloid association via either mechanism. These results call for the development of colloid transport theories that explicitly account for the influence of the hydrodynamic field at the grain surface.  相似文献   

7.
Colloid transport and distribution in the hyporheic zone   总被引:1,自引:0,他引:1  
Colloids moving from the stream into the hyporheic zone may have a negative impact on aquatic ecosystems as they are potential contaminants or carriers of contaminants. Moreover, retained colloids in the hyporheic zone could not only reduce the exchange flux between the stream and streambed but also change the conditions of the bed, affecting the habitats for aquatic organisms. Previous studies focused on the exchange flux across the sediment–water interface, but the colloid transport processes and distribution of retained colloids in the streambed have received little attention. We conducted experiments within a laboratory flume to examine these processes in a streambed driven by bedform‐induced hyporheic flow. Retained colloids measured in the bed at the end of the experiments revealed colloid retention mainly in the shallow layer of hyporheic zone (0–5 cm below the interface). The results demonstrated significant effects of particle trapping and settling on the colloid transport and distribution in the streambed. Retention leads to the formation of a colloid‐filled shallow layer in the bed. Particle paths based on model simulations showed that colloid settling in pore water modifies the direction of colloid transport and allows the colloid particles to move more deeply in the bed.  相似文献   

8.
The proper management of coastal aquifers commonly requires an understanding of regional mass flow and complete seawater–freshwater circulation. In this study, time series observations of seawater intrusion and refreshing were conducted using a column experiment based on natural flow conditions in coastal groundwater and a sampled medium from a coastal sandy aquifer without chemical treatment. Ranges of hydrodynamic and hydrochemical variables were tested and analysed. The results showed that the zeta potential of suspended colloids in aqueous solution in an aquifer polluted with 0.5 g/kg of heavy metals exhibited an isoelectric point for pH values ranging from 5.70 to 6.07 when freshwater or seawater completely occupied the aquifer pores, which is representative of natural hydrochemical conditions. In this scenario, a high background concentration of heavy metals induced colloidal immobilization. Otherwise, seawater–freshwater circulation enabled colloid mobilization due to ionic strength and pH fluctuations. The migration of multiple heavy metals occurred at a characteristic time of approximately 1 pore volume after each intrusion stage began and when the peak rate of colloid release was reached. At these times, the colloid behaviour determined the quantity and pathway of heavy metal transport. On the basis of the influences of seawater and freshwater interactions, the quantity of mobilized particles generally decreased and was uniformly distributed in each fraction due to particle loss and decreased porous connectivity. We speculate that the decrease in the total surface area of the migratory colloids may cause colloid‐associated heavy metal transport to decrease. The experimental results provide a useful basis for testing coastal groundwater flow and mass transport models because these phenomena require full characterization to precisely evaluate the associated fluxes from the field scale to the microscopic dimension.  相似文献   

9.
In this work a coupling method for the characterisation of colloid‐mediated transport of the metal(loid) species in porous media was developed. For this transport experiments quartz sand was used as column packing material and the synthetic three‐layer clay mineral laponite as model colloid. The determination of colloids was conducted by means of UV detection. The quantification of the metal(loid) ions was carried out in two different ways: (1) The fractions collected at the column outlet were analysed with an inductively coupled plasma mass spectrometer (ICP‐MS) (offline measurements); (2) the column system was directly coupled with ICP‐MS (online measurements). In the column experiments the influence of laponite colloids on the transport of Cu, Pb, Zn, Pt and As species was investigated. In the offline experiments as a consequence of dilution during sample preparation no metal(loid) species at the column outlet could be found. Unlike this the breakthrough of all metal(loid)s could be detected under the same experimental column conditions in the coupling experiments. This coupling technique offers the online detection of the metal species and colloidal particles with high resolution even at low concentrations and without any time‐consuming preparation. The coupling experiments have shown that the laponite particles accelerate the transport of the cationic metals. For anionic metal(loid) species no influence of laponite on their transport behaviour was found.  相似文献   

10.
A study of the distribution of bacteria in relation to particle concentration and type was conducted over a spring-neap tidal cycle in the Tamar Estuary, southwest England. Three groups of bacteria were recognized: free-living; those attached to permanently suspended particles; and those attached to particles which undergo tidally controlled resuspension and sedimentation. The total activity and the activity of all three groups of bacteria increase in the turbidity maximum region. The bacteria associated with the permanently suspended particles, which have a larger mean size and organic carbon content than those in the resuspended sediments, contribute the major part of this increased activity. This is a significant finding as it had been previously thought that the increase in bacterial activity at the turbidity maximum was due to bacteria attached to resuspended sediments. However, resuspension still plays an important role because the increase in bacterial activity is consistently coincident with the turbidity maximum.  相似文献   

11.
12.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

13.
In this study, a generalized contaminant retardation factor applicable to a multiphase system where various types of colloids exist simultaneously with contaminants is derived and incorporated into an equilibrium model which is successfully applied to experimental data for which phenanthrene was used as hydrophobic organic contaminants and dissolved organic matter (DOM) or bacteria as mobile carriers. Based on the parameter values for the experimental data regarding the association of phenanthrene with solid matrix, DOM and various bacterial isolates, numerical experiments are performed to examine the transport behaviour of hydrophobic organic contaminants in various types of the multiphase system. Numerical experiments demonstrate that the extent of contaminant transport enhancement depends on the adsorption affinity of the colloid, its concentration and its mobility, and that the importance of a third phase to contaminant transport needs to be evaluated carefully with respect to the relevance of experimental conditions applied to realistic environmental conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Understanding the behavior of colloids in groundwater is critical as some are pathogenic while others may facilitate or inhibit the transport of dissolved contaminants. Colloid behavior in saturated fractured aquifers is governed by the physical and chemical properties of the groundwater-particle-fracture system. The interaction between these properties is nonlinear, and there is a need for a mathematical model describing the relationship between them to advance the mechanistic understanding of colloid transport in fractures and facilitate modeling in fractured environments. This paper coupled genetic programming and linear regression within a multigene genetic programming framework to develop a robust mathematical model describing the relationship between colloid retention in fractures and the physical and chemical parameters that describe the system. The data employed for model development and validation were collected from a series of 75 laboratory-scale colloid tracer experiments conducted under a range of conditions in three laboratory-induced discrete dolomite fractures and their epoxy replicas. The model sufficiently reproduced the observed data with coefficients of determination (R2) of 0.92 and 0.80 for model development and validation, respectively. A cross-validation demonstrated the model generality to 86% of the observed data. A variance-based global sensitivity analysis confirmed that attachment is the primary retention mechanism in the systems employed in this work. The model developed in this study provides a tool describing colloid retention in factures, which furthers the understanding of groundwater-particle-fracture system conditions contributing to the retention of colloids and can aid in the design of groundwater remediation strategies and development of groundwater management plans.  相似文献   

16.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

17.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

18.
19.
The dynamics of pyroclastic surges accompanied by co-ignimbrite plumes is investigated numerically. The numerical simulations are performed with a newly developed numerical model, which is based on the Navier–Stokes equations for time-dependent flows of a compressible fluid in two-dimensional Cartesian coordinates. We regard pyroclastic surges as dilute turbulent suspensions in which hot gases and fine solid particles are homogeneously mixed owing to vigorous turbulence. In other words, the gas–particle mixture is treated as a single-phase fluid whose bulk density is represented by averaging the density of each component in the numerical model. We focus on the effect of buoyancy forces generated by the thermal expansion of the air mixed into pyroclastic surges from the calm surroundings. For our purpose, the numerical model is designed to simulate relatively simple flows spreading over a horizontal flat surface. Topographic irregularity and the sedimentation process of solid particles are neglected in the present simulations. The motion of pyroclastic surges is generated by the instantaneous release of a gas–particle mixture whose density is initially larger than the ambient air density and changes nonlinearly with the temperature and concentration of suspended solid particles. Turbulent mixing is evaluated by adopting the Smagorinsky model. By employing cubic interpolated pseudo-particle (CIP) method and C-CUP method, we obtain the fine structure of flows. The behavior of calculated flows agrees fairly well with observed pyroclastic surges in nature. The current head, which remains hot and dense, keeps spreading over a horizontal surface at a speed of about 20 m s−1. The spreading speed is of the order of the speed of a gravity current that excludes the influence of thermal expansion. Besides, turbulent mixing between the basal dense layer and the ambient air is enhanced by the successive development of an interfacial less-dense layer. This results in the formation of a number of buoyant plumes rising above a horizontally spreading current. Consequently, the tails of the current thickens as time progresses. A parametric study shows that the initial temperature of a gas–particle mixture should be higher than about 600 K when buoyant plumes occur owing to the thermal expansion of mixed air. The result is quantitatively interpreted by introducing a diagram that describes the relationship among the bulk density, temperature and concentration of solid particles suspended in pyroclastic surges.  相似文献   

20.
To simulate the behavior of radionuclides along a salinity gradient, in vitro sorption and desorption kinetics of Co, Mn, Cs, Fe, Ag, Zn and Cd were studied in Loire river water and the macrotidal Loire estuarine water over two different seasons. Partitioning between the dissolved phase and suspended solids were followed up over 100 h after adding radioactive tracers to freshly collected freshwater (sorption stage); this stage was followed by desorption in fresh and estuarine waters. A kinetic model describing the interactions between trace metals and particles under a salinity gradient was developed and calibrated. Among parameters and/or processes that control the fate and behavior of contaminated particles during their transfer in estuarine systems, this study shows that the speciation of trace metals is controlled by: (i) the chemical water composition: for all the elements except for Fe, desorption increased with salinity; however, the amplitude of such an effect strongly depended on the element and/or on the composition of the particulate phase (and consequently on the season); (ii) the possibility for a given element to form (or not) stable surface particle moieties such as oxides or inner-sphere complexes; (iii) the distribution of a given element among different types of sites characterised by different binding forces that can lead (or not) to re-adsorption processes after mixing of contaminated particles with uncontaminated water.Our model enabled the quantification of the contribution and the characteristic time of reactions that took place over short and long periods on the global partitioning between particulate and dissolved phases during sorption and desorption and to determine the extent to which these reactions were modified by the salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号