首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
This paper introduces a new method for simulating large-scale subsurface contaminant transport that combines an Analytic Element Method (AEM) groundwater flow solution with a split-operator Streamline Method for modeling reactive transport. The key feature of the method is the manner in which the vertically integrated AEM flow solution is used to construct three-dimensional particle tracks that define the geometry of the Streamline Method. The inherently parallel nature of the algorithm supports the development of reactive transport models for spatial domains much larger than current grid-based methods. The applicability of the new approach is verified for cases with negligible transverse dispersion through comparisons to analytic solutions and existing numerical solutions, and parallel performance is demonstrated through a realistic test problem based on the regional-scale transport of agricultural contaminants from spatially distributed sources.  相似文献   

3.
    
A reliability approach is used to develop a probabilistic model of two-dimensional non-reactive and reactive contaminant transport in porous media. The reliability approach provides two important quantitative results: an estimate of the probability that contaminant concentration is exceeded at some location and time, and measures of the sensitivity of the probabilistic outcome to likely changes in the uncertain variables. The method requires that each uncertain variable be assigned at least a mean and variance; in this work we also incorporate and investigate the influence of marginal probability distributions. Uncertain variables includex andy components of average groundwater flow velocity,x andy components of dispersivity, diffusion coefficient, distribution coefficient, porosity and bulk density. The objective is to examine the relative importance of each uncertain variable, the marginal distribution assigned to each variable, and possible correlation between the variables. Results utilizing a two-dimensional analytical solution indicate that the probabilistic outcome is generally very sensitive to likely changes in the uncertain flow velocity. Uncertainty associated with dispersivity and diffusion coefficient is often not a significant issue with respect to the probabilistic analysis; therefore, dispersivity and diffusion coefficient can often be treated for practical analysis as deterministic constants. The probabilistic outcome is sensitive to the uncertainty of the reaction terms for early times in the flow event. At later times, when source contaminants are released at constant rate throughout the study period, the probabilistic outcome may not be sensitive to changes in the reaction terms. These results, although limited at present by assumptions and conceptual restrictions inherent to the closed-form analytical solution, provide insight into the critical issues to consider in a probabilistic analysis of contaminant transport. Such information concerning the most important uncertain parameters can be used to guide field and laboratory investigations.  相似文献   

4.
A reliability approach is used to develop a probabilistic model of two-dimensional non-reactive and reactive contaminant transport in porous media. The reliability approach provides two important quantitative results: an estimate of the probability that contaminant concentration is exceeded at some location and time, and measures of the sensitivity of the probabilistic outcome to likely changes in the uncertain variables. The method requires that each uncertain variable be assigned at least a mean and variance; in this work we also incorporate and investigate the influence of marginal probability distributions. Uncertain variables includex andy components of average groundwater flow velocity,x andy components of dispersivity, diffusion coefficient, distribution coefficient, porosity and bulk density. The objective is to examine the relative importance of each uncertain variable, the marginal distribution assigned to each variable, and possible correlation between the variables. Results utilizing a two-dimensional analytical solution indicate that the probabilistic outcome is generally very sensitive to likely changes in the uncertain flow velocity. Uncertainty associated with dispersivity and diffusion coefficient is often not a significant issue with respect to the probabilistic analysis; therefore, dispersivity and diffusion coefficient can often be treated for practical analysis as deterministic constants. The probabilistic outcome is sensitive to the uncertainty of the reaction terms for early times in the flow event. At later times, when source contaminants are released at constant rate throughout the study period, the probabilistic outcome may not be sensitive to changes in the reaction terms. These results, although limited at present by assumptions and conceptual restrictions inherent to the closed-form analytical solution, provide insight into the critical issues to consider in a probabilistic analysis of contaminant transport. Such information concerning the most important uncertain parameters can be used to guide field and laboratory investigations.  相似文献   

5.
Eulerian–Lagrangian localized adjoint methods (ELLAMs) provide a general approach to the solution of advection-dominated advection–diffusion equations allowing large time steps while maintaining good accuracy. Moreover, the methods can treat systematically any type of boundary condition and are mass conservative. However, all ELLAMs developed so far suffer from non-physical oscillations and are usually implemented on structured grids. In this paper, we propose a finite volume ELLAM which incorporates a novel correction step rendering the method monotone while maintaining conservation of mass. The method has been implemented on fully unstructured meshes in two space dimensions. Numerical results demonstrate the applicability of the method for problems with highly non-uniform flow fields arising from heterogeneous porous media.  相似文献   

6.
1 INTRODUCTION Alluvial streams generally have permeable bed sediments that can admit significant pore water flows. Steady flow of surface water over bed roughness features such as sand waves or pools and riffles can then drive water flow into and out of the shallow subsurface. This is often termed hyporheic exchange, and the subsurface region where mixing between stream and ground waters occurs is the hyporheic zone (Hynes, 1983). The hyporheic zone has been shown to be a critical com…  相似文献   

7.
  总被引:3,自引:0,他引:3  
It has long been known that colloids can facilitate the transport of contaminants in groundwater systems by reducing the effective retardation factor. A significant effort has been devoted to study colloid-facilitated contaminant transport during the past decade. Many of the previous studies were restricted to one-dimensional analyses and comparisons with finite-column experiments. In this work, a two-dimensional numerical model is developed and used to study the different interactions between colloids, contaminants, and porous media under homogeneous conditions. The numerical formulation of the model is based on discretizing mass balance equations and reaction equations using finite differences having a third-order, total variance-diminishing scheme for the advection terms. This scheme significantly reduces numerical dispersion and leads to greater accuracy compared to the standard central-differencing scheme. The model is tested against analytical solutions under simplified conditions as well as against experimental data, and the results are favorable. The model is used to investigate the impact of the various reaction rates and parameter values on the movement of contaminant plumes in two dimensions. The model is also used to investigate the hypothesis that colloids may increase the effective retardation factor of contaminant plumes. The analysis shows that assuming kinetic mass exchange between contaminant and colloids with constant reaction rate coefficients that are not related to the concentrations may lead to inaccurate results. These inaccurate results are exemplified in the finding that under the kinetic assumption the ratio of the initial concentration of colloids to the initial concentration of contaminant does not affect the amount of facilitation or retardation that occurs in the system. It is also found that colloids can increase the effective retardation factor for the contaminant under certain combinations of reaction rates and distribution coefficients. A quantitative empirical expression to identify whether colloids retard or facilitate the contaminant movement is presented.  相似文献   

8.
We consider an Eulerian–Lagrangian localized adjoint method (ELLAM) applied to nonlinear model equations governing solute transport and sorption in porous media. Solute transport in the aqueous phase is modeled by standard advection and hydrodynamic dispersion processes, while sorption is modeled with a nonlinear local-equilibrium model. We present our implementation of finite volume ELLAM (FV-ELLAM) and finite element (FE-ELLAM) discretizations to the reactive transport model and evaluate their performance for several test problems containing self-sharpening fronts.  相似文献   

9.
10.
    
In this paper, we develop a two-scale operator-splitting method for the classical two-phase flow model, which handles advective and diffusive processes on different grids. The aim is to reduce computational complexity without loss of accuracy by using the numerical flexibility of operator-splitting techniques. To enhance the stability and the robustness with regards to sharp fronts, an additional slope limiter is introduced as a local post-processing step. For simplicity of notation, we provide the method in one dimension first and then generalize it to higher dimensions. Numerical examples illustrate the effect of the slope-limiting step and show the performance and flexibility of the proposed two-scale method.  相似文献   

11.
《国际泥沙研究》2016,(4):324-329
Transport of contaminants in Miami River (Florida, USA) sediments with river currents is a concern due to their potential impact in areas that are away from the potential sources. Accumulation profiles of five metals (As, Cd, Hg, Zn, Pb) in the surficial sediments of the Miami River were evaluated in relation to grain size (from less than 0.075 mm to 6.3 mm) and organic content. Surficial sediment samples were collected along the river basin as well as in bay waters. Fine sediments ( o 0.106 mm) contained more than 10 times the levels of Cd and Hg and more than 6 times the levels of arsenic in comparison to the sediments that are larger than 0.850 mm. Zn and Pb levels were more than 10 times in the fine sediments ( o 0.106 mm) in comparison to those that were larger than 4.750 mm. Cd, Hg, and Zn levels had sig-nificant correlation with the total organic carbon content of the sediments. This indicates that Cd, Hg, and Zn in fine sediments have the potential to be metabolized in addition to potential to be mobilized with river currents. Analysis of the Gibbs settling velocities of particles showed that particles smaller than 0.5 mm can be transported with the river currents. The levels of heavy metal in fine sediments ( o 0.425 mm) along the river bed showed that fine particles had tendency to be mobilized and accu-mulate at locations where the rivers currents are low and carried out to the bay.  相似文献   

12.
Numerical simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity, , were conducted in a three-dimensional heterogeneous and statistically isotropic aquifer. The hydraulic conductivity, K(x), is modeled as a random field which is assumed to be log-normally distributed with an exponential covariance. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume and the plume centroid variances were simulated with 1600 Monte Carlo (MC) runs for three variances of log K, Y2=0.09, 0.23, and 0.46, and a square source normal to of three dimensionless lengths. It is showed that 1600 MC runs are needed to obtain stabilized results in mildly heterogeneous aquifers of Y20.5 and that large uncertainty may exist in the simulated results if less MC runs are used, especially for the transverse second spatial moments and the plume centroid variance in transverse directions. The simulated longitudinal second spatial moment and the plume centroid variance in longitudinal direction fit well to the first-order theoretical results while the simulated transverse moments are generally larger than the first-order values. The ergodic condition for the second spatial moments is far from reaching in all cases simulated and transport in transverse directions may reach ergodic condition much slower than that in longitudinal direction.  相似文献   

13.
Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.  相似文献   

14.
The mean value of a density of a cloud of points described by a generalized Liouville equation associated with a convection dispersion equation governing adsorbing solute transport yields a joint concentration probability density. The general technique can be applied for either linear or nonlinear adsorption; here the application is restricted to linear adsorption in one-dimensional transport. The equation generated for the joint concentration probability density is in the general form of a Fokker-Planck equation, but with a suitable coordinate transformation, it is possible to represent it as a diffusion equation with variable coefficients.  相似文献   

15.
    
First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol–water partition coefficient, organic carbon–water partition coefficient, solubility, diffusivity in water, HOMO–LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues.  相似文献   

16.
Heterogeneity is prevalent in aquifers and has an enormous impact on contaminant transport in groundwater. Numerical simulations are an effective way to deal with heterogeneity directly by assigning different hydraulic property values to each numerical grid block. Because hydraulic properties vary on different scales, but they cannot be sampled exhaustively and the number of numerical grid blocks is limited by computational considerations, the dispersive effects of unmodeled heterogeneity need to be accounted for. Dispersion tensors can be used to model the dispersion caused by unmodeled heterogeneity. The concept of block-effective macrodispersion tensors for modeling the effects of small-scale variability on solute transport introduced by Rubin et al. [Rubin Y, Sun A, Maxwell R, Bellin A. The concept of block-effective macrodispersivity and a unified approach for grid-scale- and plume-scale-dependent transport. J Fluid Mech 1999;395:161–80] is extended in this paper for use with reactive solutes. The tensors are derived for reactive solutes with spatially variable retardation factors and for solutes experiencing spatially uniform rate-limited sorption. The longitudinal block-effective macrodispersion coefficient is largest for perfect negative correlation between the log-hydraulic conductivity and the retardation factor. Because dispersion tensors, as they are usually implemented in numerical simulations, produce symmetric spreading, the applicability of the concept depends on the portion of the plume asymmetry caused by small-scale variability. The presented results show that the concept is applicable for rate-limited sorption for block sizes of one and two integral scales.  相似文献   

17.
18.
Existing analytical solutions to 2D and 3D contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. An approximate method is developed herein for coordinate mapping of 2D (vertically-averaged) transport solutions to non-uniform steady-state irrotational and divergence-free flow fields in single-layer aquifers. The method enables existing analytical transport solutions to be applied to aquifer systems with wells, non-uniform saturated thickness, surface water features, and (to a limited degree) heterogeneous hydraulic conductivity and recharge. This mass-conservative coordinate mapping approach is inexact in its approximation of the dispersion process but is still sufficiently accurate for many simple flow systems. The degree of model error is directly proportional to the variation of velocity magnitude within the domain. These mapped analytical solutions are compared to numerical simulation results and the coordinate mapping errors are investigated. The methods described herein may be used in the traditional capacity of analytical transport models, i.e., screening and preliminary site assessment, without sacrificing accuracy by assuming locally uniform flow conditions or applying an ad-hoc coordinate transformation. The solutions benefit from the traditional advantages of analytical methods, particularly the removal of artifacts due to spatial and temporal discretization: no time-stepping or numerical discretization is required.  相似文献   

19.
    
Recent work with stochastic inverse modeling techniques has led to the development of efficient algorithms for the construction of transmissivity (T) fields conditioned to measurements of T and head. Small numbers of calibration targets and correlation between model parameters in these inverse solutions can lead to a relatively large region in parameter space that will produce a near optimal calibration of the T field to measured heads. Most applications of these inverse techniques have not considered the effects of non-unique calibration on subsequent predictions made with the T fields. Use of these T fields in predictive contaminant transport modeling must take into account the non-uniqueness of the T field calibration. A recently developed ‘predictive estimation’ technique is presented and employed to create T fields that are conditioned to observed heads and measured T values while maximizing the conservatism of the associated predicted advective travel time. Predictive estimation employs confidence and prediction intervals calculated simultaneously on the flow and transport models, respectively. In an example problem, the distribution of advective transport results created with the predictive estimation technique is compared to the distribution of results created under traditional T field optimization where model non-uniqueness is not considered. The predictive estimation technique produces results with significantly shorter travel times relative to traditional techniques while maintaining near optimal calibration. Additionally, predictive estimation produces more accurate estimates of the fastest travel times.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号