首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and ∼70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

2.
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and 70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.  相似文献   

3.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

4.
We investigate the impact of 1/8°, 1/16°, 1/32°, and 1/64° ocean model resolution on model–data comparisons for the Gulf Stream system mainly between the Florida Straits and the Grand Banks. This includes mean flow and variability, the Gulf Stream pathway, the associated nonlinear recirculation gyres, the large-scale C-shape of the subtropical gyre and the abyssal circulation. A nonlinear isopycnal, free surface model covering the Atlantic from 9°N to 47°N or 51°N, including the Caribbean and Gulf of Mexico, and a similar 1/16° global model are used. The models are forced by winds and by a global thermohaline component via ports in the model boundaries. When calculated using realistic wind forcing and Atlantic model boundaries, linear simulations with Munk western boundary layers and a Sverdrup interior show two unrealistic mean Gulf Stream pathways between Cape Hatteras and the Grand Banks, one proceeding due east from Cape Hatteras and a second one continuing northward along the western boundary until forced eastward by the regional northern boundary. The northern pathway is augmented when a linear version of the upper ocean global thermohaline contribution to the Gulf Stream is added as a Munk western boundary layer. A major change is required to obtain a realistic pathway in nonlinear models. Resolution of 1/8° is eddy-resolving but mainly gives a wiggly version of the linear model Gulf Stream pathway and weak abyssal flows except for the deep western boundary current (DWBC) forced by ports in the model boundaries. All of the higher resolution simulations show major improvement over the linear and 1/8° nonlinear simulations. Additional major improvement is seen with the increase from 1/16° to 1/32° resolution and modest improvement with a further increase to 1/64°. The improvements include (1) realistic separation of the Gulf Stream from the coast at Cape Hatteras and a realistic Gulf Stream pathway between Cape Hatteras and the Grand Banks based on comparisons with Gulf Stream pathways from satellite IR and from GEOSAT and TOPEX/Poseidon altimetry (but 1/32° resolution was required for robust results), (2) realistic eastern and western nonlinear recirculation gyres (which contribute to the large-scale C-shape of the subtropical gyre) based on comparisons with mean surface dynamic height from the generalized digital environmental model (GDEM) oceanic climatology and from the pattern and amplitude of sea surface height (SSH) variability surrounding the eastern gyre as seen in TOPEX/Poseidon altimetry, (3) realistic upper ocean and DWBC transports based on several types of measurements, (4) patterns and amplitude of SSH variability which are generally realistic compared to TOPEX/Poseidon altimetry, but which vary from simulation to simulation for specific features and which are most realistic overall in the 1/64° simulation, (5) a basin wide explosion in the number and strength of mesoscale eddies (with warm core rings (WCRs) north of the Gulf Stream, the regional eddy features best observed by satellite IR), (6) realistic statistics for WCRs north of the Gulf Stream based on comparison to IR analyses (low at 1/16° resolution and most realistic at 1/64° resolution for mean population and rings generated/year; realistic ring diameters at all resolutions), and (7) realistic patterns and amplitude of abyssal eddy kinetic energy (EKE) in comparison to historical measurements from current meters.  相似文献   

5.
Abstract

The effect of an abrupt headland on a barotropic oceanic boundary current with variable bottom topography is investigated. The objective is to explore with a very simple model some of the observed features of flow past Brooks Peninsula, an obstacle to boundary currents on the west coast of Vancouver Island. It is shown that the seasonal variation in the background current field causes a large change in the response to the headland. The difference is both quantitative and qualitative and results from the ability of southward alongshore flows to support topographic Rossby lee waves.

As a result of the presence of the lee waves a strong offshore flow occurs just downstream of the Peninsula and this ejects water from the continental shelf into deep water producing features reminiscent of the so‐called “squirts” and “jets”.  相似文献   

6.
During the Intensive Observation Period (IOP) 7 (22 February 1986) of the Genesis of Atlantic Lows Experiment a persistent coastal front was observed along the Carolina coast in the eastern United States. An intensive baroclinic zone, associated with the cold air damming to the east of the Appalachian Mountains, and the warm marine atmospheric boundary layer over the Gulf Stream, resulted in a northeasterly low-level geostrophic wind maximum near the coast.Two convergence zones were observed, one near the shore and the other near the western edge of the Gulf Stream. The convergence zone near the coastline was relatively weaker than that near the Gulf Stream. The differential surface thermal forcing caused enhanced convergence associated with the frontogenesis, and a meso-low was observed over the offshore front. The terms in the frontogenesis equation are estimated, and the diabatic term is found to be larger than the frontogenetic confluence term along the shore.  相似文献   

7.
The sigma coordinate, Princeton Ocean Model (POM) has been configured for the North Atlantic Ocean between 5°N and 50°N as part of data assimilation, model predictability and intercomparison studies. The model uses a curvilinear orthogonal grid with higher resolution in the western North Atlantic and lower resolution in the eastern North Atlantic. A series of experiments, each one of a 10-year duration, are performed to evaluate the sensitivity of the ocean mean state and variability to model parameters and model configuration; these experiments include open vs. closed boundary conditions, low vs. high resolution grids, and different choices of diffusion and viscosity. The results show that the use of closed boundaries together with near-boundary buffer zones where temperature and salinity are relaxed towards the observed values give less realistic flows, weaker recirculation gyres and less realistic Gulf Stream separation than do open boundary conditions. The experiments show that the sensitivity of the ocean variability in the model to the choice of the Smagorinsky diffusion and viscosity coefficients significantly differs from one region to another and largely depends on other attributes such as the mean position of the Gulf Stream in each simulation. A 50% change in model resolution in the Gulf Stream region has a larger effect on ocean variability than a change of diffusivity by a factor of 10. In areas where either the high or the low resolution models have sufficient resolution, as in the Gulf of Mexico, they are able to produce variability comparable to that observed from altimeter data; elsewhere, model variability is underestimated.  相似文献   

8.
The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24–48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982–April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.  相似文献   

9.
Interannual-to-interdecadal ocean-atmosphere interaction in midlatitudes is studied using an idealized coupled model consisting of eddy resolving two-layer quasi-geostrophic oceanic and atmospheric components with a simple diagnostic oceanic mixed layer. The model solutions exhibit structure and variability that resemble qualitatively some aspects of the observed climate variability over the North Atlantic. The atmospheric climatology is characterized by a zonally modulated jet. The single-basin ocean climatology consists of a midlatitude double jet that represents the Gulf Stream and Labrador currents, which are parts of the subtropical and subpolar gyres, respectively. The leading mode of the atmospheric low-frequency variability consists predominantly of meridional displacements of the zonal jet, with a local maximum over the ocean. The first basin-scale mode of sea-surface temperature has a red power spectrum, is largely of one polarity and bears qualitative similarities with the observed interdecadal mode identified by Kushnir. A warm sea-surface temperature anomaly is accompanied by anomalously low atmospheric pressure, an intensified model Gulf Stream and a weakened Labrador current. This mode is found not to be affected significantly by oceanic coupling. In the western part of the basin, this sea-surface temperature pattern is shown to be forced by the slowest components of the surface-wind anomaly through a delayed modulation of the baroclinic time-dependent boundary currents which advect mean SST, with synchronous variations in the two oceanic jets. The response in the east is found to be dominated by local atmospheric forcing. Basin-scale intrinsic oceanic variability consists of a damped oceanic oscillatory mode in the baroclinic flow field that is excited by the atmospheric noise. Its period is around 5.5 years, but it has a negligible influence on the evolution of sea-surface temperature. Important for this mode's excitation is the meridional position of the atmospheric center of action relative to the ocean gyres.  相似文献   

10.
Turbulence structure of the marine boundary layer (MBL) over the Gulf Stream and the adjacent coastal waters during the development of a storm is discussed. Prestorm conditions prevailed on 9 February and a meso-low formed on 10 February which intensified into an offshore cyclone on 11 February. Observations from aircraft, buoys and ships were made as part of the Genesis of Atlantic Lows Experiment (GALE, 86) during these three days. Analysis of the high frequency (20 Hz) turbulence data collected from low-level flights by the NCAR King Air and Electra indicates the effect of the storm development on the turbulence structure of the MBL.Observational data over the stable region near the coast on 10 February revealed the presence of internal gravity waves. Spectral analysis indicates that the size and energy of the eddies increased over the Gulf Stream and also increased as the storm developed. Results obtained using conditional sampling techniques suggest that intense narrower warm updrafts dominate the total heat flux. The broader, less intense cool downdrafts seem to occupy a large portion of the Gulf Stream.  相似文献   

11.
The characteristics of the unstable normal modes of fluctuation of an eastward-flowing jet over a weak bottom slope are examined with a linear, quasi-geostrophic, continuously stratified, mixed-instability model utilizing basic-state fields determined from observations of the velocity and temperature structure of the Gulf Stream near 73d°W. Comparison of the model results with Gulf Stream path observations based on inverted echo sounder measurements in the area between 74°W and 70°W shows that the model can predict several of the observed features of Gulf Stream meanders: (a) two dispersion regimes, one with fast and one with slow changes in phase speed with meander wavelength; (b) the wavelengths λ associated with two growth maxima, a primary maximum at λ 270 km and a secondary maximum at λ 180 km.The energy conversion rates, when integrated over the model cross-sectional domain, change from predominantly baroclinic for fluctuations with λ < 370 km, to predominantly barotropic for λ > 370 km. The eddy pressure field is surface intensified in the upper 1000 m; a secondary intensification due to bottom topography occurs for the shorter wavelength (λ 180 km) fluctuations near the bottom at the area where the basic state jet extends to the bottom.In the absence of bottom slope, the phase speeds decrease and the growth rates increase relative to the sloped bottom case for all fluctuations with λ > 200 km; consistent with observations showing Gulf Stream meanders to slow down as they propagate through areas of relaxing bottom slope. Fluctuations with λ > 1000 km propagate upstream with phase speed of the order of −5 km day−1. The energy conversion rates, integrated over the model cross-sectional area, are predominantly baroclinic for all wavelengths.  相似文献   

12.
Ship borne measurements of atmospheric boundary layer (ABL) parameters, sea-surface temperature and radar signals are analyzed to reveal the effects of the ABL transformation above the Gulf Stream temperature frontal zone. It was found that local changes in vertical gradients of wind speed and air temperature are well correlated with sub-mesoscale (~ 10 km) sea surface temperature variations. These effects are accompanied by appropriate variations in surface wind stresses that were identified from microwave backscatter.For steady atmospheric conditions the same effects were observed on spatial scales of 100 km, demonstrating positive radar signal contrast of the Gulf Stream warm waters with respect to surrounding Sargasso sea and shelf water areas. A simplified model of the ABL, accounting for an effect of spatial inhomogeneity by introducing an internal boundary layer, is used to analyze field observations. The model is able to reproduce both sub-mesoscale and mesoscale ABL evolution.  相似文献   

13.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

14.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

15.
We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere–ocean models: the National Center for Atmospheric Research community earth system model version 1 (CESM1) and the National Center for Environmental Predictions global forecasting system-modular ocean model version 4 (GFS-MOM4) coupled model. In the CESM1, the coastal stratocumulus (Sc)-topped planetary boundary layers (PBLs) in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow cumulus (Cu) is too abrupt and occurs too close to the coast. By contrast, in the GFS-MOM4 the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is “delayed” and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between these differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.  相似文献   

16.
Application of linear baroclinic instability theory to the observed distributions of velocity, stratification, and potential vorticity in the Gulf Stream near 74° W is successful in predicting the time and length scales of the most rapidly growing disturbances. A continuously-stratified, one-dimensional model with realistic bottom slope predicts propagation speeds of 10–50 cm s−1 associated with two regimes of rapid temporal growth centered at periods of 28 days and 5–7 days. This prediction is consistent with observations of the propagation and growth of Gulf Stream meanders derived from inverted echo sounder measurements in this region. The instability model also predicts that for realistic bottom slopes the baroclinic energy transfer should be weakly negative (eddy-to-mean) in deep water, but for low-frequency waves should change to significant positive (mean-to-eddy) transfer above depths of 1500 m, consistent with observations.  相似文献   

17.
In studies of large-scale ocean dynamics, often quoted values of Sverdrup transport are computed using the Hellerman–Rosenstein wind stress climatology. The Sverdrup solution varies, however, depending on the wind set used. We examine the differences in the large-scale upper ocean response to different surface momentum forcing fields for the North Atlantic Ocean by comparing the different Sverdrup interior/Munk western boundary layer solutions produced by a 1/16° linear numerical ocean model forced by 11 different wind stress climatologies. Significant differences in the results underscore the importance of careful selection of a wind set for Sverdrup transport calculation and for driving nonlinear models. This high-resolution modeling approach to solving the linear wind-driven ocean circulation problem is a convenient way to discern details of the Sverdrup flow and Munk western boundary layers in areas of complicated geometry such as the Caribbean and Bahamas. In addition, the linear solutions from a large number of wind sets provide a well-understood baseline oceanic response to wind stress forcing and thus, (1) insight into the dynamics of observed circulation features, by themselves and in conjunction with nonlinear models, and (2) insight into nonlinear model sensitivity to the choice of wind-forcing product.The wind stress products are evaluated and insight into the linear dynamics of specific ocean features is obtained by examining wind stress curl patterns in relation to the corresponding high-resolution linear solutions in conjunction with observational knowledge of the ocean circulation. In the Sverdrup/Munk solutions, the Gulf Stream pathway consists of two branches. One separates from the coast at the observed separation point, but penetrates due east in an unrealistic manner. The other, which overshoots the separation point at Cape Hatteras and continues to flow northward along the continental boundary, is required to balance the Sverdrup interior transport. A similar depiction of the Gulf Stream is commonly seen in the mean flow of nonlinear, eddy-resolving basin-scale models of the North Atlantic Ocean. An O(1) change from linear dynamics is required for realistic simulation of the Gulf Stream pathway. Nine of the eleven Sverdrup solutions have a C-shaped subtropical gyre, similar to what is seen in dynamic height contours derived from observations. Three mechanisms are identified that can contribute to this pattern in the Sverdrup transport contours. Along 27°N, several wind sets drive realistic total western boundary current transport (within 10% of observed) when a 14 Sv global thermohaline contribution is added (COADS, ECMWF 10 m re-analysis and operational, Hellerman–Rosenstein and National Centers for Environmental Prediction (NCEP) surface stress re-analysis), a few drive transport that is substantially too high (ECMWF 1000 mb re-analysis and operational and Isemer–Hasse) and Fleet Numerical Meteorology and Oceanography Center (FNMOC) surface stresses give linear transport that is slightly weaker than observed. However, higher order dynamics are required to explain the partitioning of this transport between the Florida Straits and just east of the Bahamas (minimal in the linear solutions vs. 5 Sv observed east of the Bahamas). Part of the Azores Current transport is explained by Sverdrup dynamics. So are the basic path of the North Atlantic Current (NAC) and the circulation features within the Intra-Americas Sea (IAS), when a linear rendition of the northward upper ocean return flow of the global thermohaline circulation is added in the form of a Munk western boundary layer.  相似文献   

18.
《大气与海洋》2013,51(3):231-240
Abstract

A distinct change in the ocean circulation of the Gulf of Alaska after the 1976–77 climate shift is studied in an eddy‐permitting primitive equation model forced by observed wind stresses from 1951–99. When the Aleutian Low strengthens after 1976–77, strong changes occur in the mean velocity of the Alaskan Stream and in its associated mesoscale eddy field. In contrast, the Alaska Current and the eddy flows in the eastern Gulf remain relatively unchanged after the shift. Since mesoscale eddies provide a possible mechanism for transporting nutrient‐ rich open‐ocean waters to the productive shelf region, the flow of energy through the food web may have been altered by this physical oceanographic change. This climate‐driven mechanism, which has a characteristic eastwest spatial asymmetry, may potentially help to explain changes in forage fish quality in diet diversity of Steller sea lions whose populations have declined precipitously since the mid‐1970s in the western Gulf while remaining stable in the eastern Gulf.  相似文献   

19.
This paper reexamines the theory of the meandering of the Gulf Stream and other inertial jets. We develop a hybrid model (with piecewise constant potential vorticity in the upper layer and a deep layer initially at rest) which allows us to clarify the relationships among thin jet, contour dynamics, and instability models. Approximating the hybrid model leads to a simple two-contour model which can be analyzed easily and can be integrated numerically for large amplitude disturbances. The jet evolution predicted by the approximate model is quite similar to the meander development under the full dynamics, except that the time scales are shorter. The model shows that baroclinic processes clearly play a significant role in the growth of meanders, while upper-layer interactions drive the final pinch-off of eddies. In addition to such process studies, the approximate model provides a simple dynamical system for further investigations.  相似文献   

20.
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号