共查询到20条相似文献,搜索用时 0 毫秒
1.
Results of in situ tests of shear wave propagation are presented and analysed to evaluate the effects of geologic processes, stress history and ageing on the shear modulus of soils. These results show clear tendencies of soil structures to get stiffer as consequence of ageing or surcharging to high stress levels. The evolution of shear modulus, as verified by these results, is significant as it changes the response of soil deposits to seismic loadings. 相似文献
2.
青藏铁路重塑冻结粉质黏土动剪切模量试验研究 总被引:3,自引:0,他引:3
通过低温动三轴试验,研究青藏铁路中重塑冻结粉质黏土的动剪切模量的变化规律及其主要因素。研究表明,冻土的最大动剪切模量随负温降低而显著增大,动剪切模量比随轴向荷载单级振次增加而有所增大,随负温降低而降低,随围压增加趋于一致。负温是冻土动力性能的一个极其重要的影响因素,因而寒区工程应引起足够的重视。研究结果对于合理认识冻土动力性能具有一定意义,也为进一步开展多年冻土场地工程地震安全性评价积累部分基础资料。 相似文献
3.
在泥质砂岩的岩石物理建模中,明确泥质砂岩中泥质胶结物的接触类型及其含量对正确认识泥质的胶结作用对泥质砂岩声速的影响以及合理地建立岩石物理模型至关重要.现阶段,尚未有实验室定量估算胶结泥质的方法,导致应用胶结砂岩理论模型预测胶结砂岩地层的声速时往往由于胶结物含量被高估从而导致预测声速结果偏高.本文通过观察铸体薄片中泥质与颗粒之间的接触关系和相对分布提出了一种区分胶结泥质和分散泥质的方法:与两个或两个以上颗粒接触的连续分布的泥质为胶结泥质;与一个颗粒接触或者不与颗粒接触的泥质为分散泥质.基于这一准则,本文基于像素拾取法估算了人造泥质砂岩的胶结泥质含量,并将胶结泥质含量作为胶结砂岩模型的输入参数优化CCT模型.对比原始模型,本文方法声速误差下降了20%,预测准确度显著提高.本文方法适用于弱胶结地层的岩石物理建模,能够准确的预测声速以结合地震和测井资料识别有利储层,定量评价储层参数.
相似文献4.
A series of cyclic triaxial tests on clayey sands was carried out and attempts were made to evaluate the strain dependency of shear modulus and damping. Strain dependencies of shear modulus and damping were simply modeled. It was shown that the change in the effective confining stress with loading cycles in the undrained shear test needed to be considered particularly in the large strain range. The consideration could be made by normalizing G with G′0=AF(e)(σ′m/σmr)n, the initial shear modulus for the effective confining stress of that particular loading cycle, instead of using G0. G/G′0 was expressed by a function of γ as G/G′0=1/(1+bgγ) which was almost stress level independent for clayey sands used in this study. The damping ratio was not much affected by the confining stress. The strain dependency of the damping ratio was modeled by h=ahγ/(1+bhγ). Effects of load irregularity on the shear modulus were also investigated. The excess pore pressure and the residual strain were generated especially when the major peaks in the irregular loading were applied to the specimen. However, G/G′0 for the irregular loading could be represented reasonably well by the average curve for the uniform cyclic loading, if the excess pore water pressure and the residual strain were taken into account. 相似文献
5.
Small strain shear modulus Gmax is an essential parameter in soil dynamics, and it is usually estimated based on the Hardin and Richart equation. However, many previous researches on sands have indicated that the Hardin and Richart equation does not consider the influences of cyclic loading history on Gmax. In this paper, effects of cyclic loading history on Gmax of saturated clays under undrained conditions are studied using a combination device of piezoelectric-ceramic bender element system and cyclic triaxial apparatus. The dynamic pre-loading includes both relatively high amplitudes of cyclic stresses and cyclic strains. Gmax without cyclic loading history is also investigated for the comparison purpose. Test results show that, at the same effective stress, both cyclic strain history and cyclic stress history will induce reduction of Gmax compared to the corresponding Gmax values with non-cyclic loading effects. In strain-controlled tests, the reduction of Gmax is slight and relatively stable; while in stress-controlled tests, the reduction of Gmax increases suddenly and remarkably when the effective stresses degrade to a certain degree. The comparison between double amplitude axial strain and residual excess pore water pressure behaviors show that the remarkable reduction of Gmax can demonstrate the cyclic failure of saturated clays. 相似文献
6.
Settlements under consecutive series of cyclic loading 总被引:1,自引:0,他引:1
In this study, consolidation settlements of soft clay caused by cyclic loading and the affecting factors such as number of cycles and stress level were experimentally investigated. A group of samples prepared in slurry consolidometer in the laboratory were tested using cyclic simple shear testing device. Normally consolidated samples were subjected to five consecutive series of cyclic loading and drainage for 60 min were applied between each cyclic loading stages. Cyclic tests were performed with stress controlled two-way sinusoidal wave loading with different stress levels and number of cycles. Frequency of cyclic loading was constant as 0.1 Hz. As a result of this study, it can be concluded that soft clays subjected to undrained cyclic loading and drainage cycles exhibit more resistance against subsequent cyclic shear stresses. The consolidation settlements, pore pressures and shear strains decrease after each stage of cyclic loading. 相似文献
7.
8.
Experimental investigations and modeling of nonlinear elasticity of fiber-reinforced soil under cyclic loading at small strain are conducted in this paper. The investigations include three aspects. First, cyclic shear tests are conducted using conventional triaxial apparatus. Twenty-seven specimens with three different fiber contents are employed to conduct triaxial cyclic shear tests under different confining pressure and loading repetition. Effects of geofiber, confining pressure and loading repetition on elastic shear modulus of reinforced soil are studied and analyzed. Second, a hyperbolic function is introduced to describe the nonlinear stress–strain skeletal curve under cyclic loading. Nonlinear elastic modulus is expressed as a function of shear strain and two variables A and B that are related to the initial tangential modulus and ultimate cyclic loading stress, respectively. In the present paper, variables A and B both are further assumed to be functions of geofiber content, confining pressure and loading repetition. Finally, eight constitutive coefficients of the nonlinear elastic model are calibrated using stress–strain curves from cyclic triaxial shear tests. The calibration of parameters is conducted using the technique of the linear regression for multiple variables. Impacts and effects of geofiber, confining pressure and loading repetitions on soil nonlinear elastic behavior are discussed. 相似文献
9.
M. K. Jafari K. Amini Hosseini F. Pellet M. Boulon O. Buzzi 《Soil Dynamics and Earthquake Engineering》2003,23(7):619
Variation of the shear strength of rock joints due to cyclic loadings is studied in the present paper. Identical joint surfaces were prepared using a developed moulding method with special mortar and shear tests were performed on these samples under both static and cyclic loading conditions. Different levels of shear displacement were applied on the samples to study joint behaviour before and during considerable relative shear displacement. It was found that the shear strength of joints is related to rate of displacement (shearing velocity), number of loading cycles and stress amplitude. Finally, based on the experimental results, mathematical models were developed for evaluation of shear strength in cyclic loading conditions. 相似文献
10.
Shear modulus and damping ratio of grouted sand 总被引:2,自引:0,他引:2
Estelle Delfosse-Ribay Irini Djeran-Maigre Richard Cabrillac Daniel Gouvenot 《Soil Dynamics and Earthquake Engineering》2004,24(6):461-471
An experimental comparative study of three different grouted sands in terms of their effects on the values of two dynamic properties is presented. The dynamic properties studied are the shear modulus and the damping ratio which are determined with resonant column tests and cyclic triaxial tests. The behaviour of a pure Fontainebleau sand is compared with the behaviour of a Fontainebleau sand grouted with a silicate grout, a micro-fine cement grout and a mineral grout. The effects of the grouting treatment, the type of grout, the confining pressure, and the strains, on the shear modulus and the damping ratio are studied. The test results have shown that grouting improves the stiffness of the sand especially for small strains. Whatever the type of material, confining stress improves the shear modulus whereas it has a negligible effect on the damping ratio. When strain increases, the shear modulus decreases and the damping ratio increases. 相似文献
11.
Alexander Y. Rozhko 《Geophysical Prospecting》2020,68(2):631-656
It is evident from the laboratory experiments that shear moduli of different porous isotropic rocks may show softening behaviour upon saturation. The shear softening means that the shear modulus of dry samples is higher than of saturated samples. Shear softening was observed both at low (seismic) frequencies and high (ultrasonic) frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic frequencies, where the softening is compensated by hardening due to unrelaxed squirt flow. It contradicts to Gassmann's theory suggesting that the relaxed shear modulus of isotropic rock should not depend upon fluid saturation, provided that no chemical reaction between the solid frame and the pore fluid. Several researchers demonstrated that the shear softening effect is reversible during re-saturation of rock samples, suggesting no permanent chemical reaction between the solid frame and the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interaction mechanism theoretically, because it does not contradict to the assumptions of Gassmann's theory, but contradicts to its conclusions. We argue that the observed shear softening of partially saturated rocks by different pore fluids is related to pore-scale interfacial phenomena effects, typically neglected by the rock physics models. These interface phenomena effects are dependent on surface tension between immiscible fluids, rock wettability, aperture distribution of microcracks, compressibility of microcracks, porosity of microcracks, elastic properties of rock mineral, fluid saturation, effective stress and wave amplitude. Derived equations allow to estimate effects of pore fluids and saturation on the shear modulus and mechanical strength of rocks. 相似文献
12.
Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system 总被引:2,自引:0,他引:2
Suat Akbulut A. Samet Hasiloglu Sibel Pamukcu 《Soil Dynamics and Earthquake Engineering》2004,24(11):805-814
Neuro-fuzzy inference systems have been used in many areas in civil engineering applications. This study was conducted to estimate low strain dynamic properties of composite media from easily measurable physical properties using the adaptive neuro-fuzzy inference system (ANFIS). The inference system was employed to predict the shear modulus and the damping coefficient of the sand samples as an alternative to lengthy laboratory testing. ANFIS was trained using low strain dynamic test results of samples of sand reinforced with particulate rubber inclusions from a resonant column device. The training was performed with an improved hybrid method, which was found to deliver better results than classical back-propagation method such as multi-layer perceptron (MLP) and multiple regression analysis method (MRM). Using the new approach, the optimal precise value of a parameter could be estimated within the constraints of the experimental design. The ANFIS model has appeared very effective in modeling complex soil properties such as shear modulus and damping coefficient, and performs better than MLP and MRM. 相似文献
13.
The dynamic shear modulus (DSM) is the most basic soil parameter in earthquake or other dynamic loading conditions and can be obtained through testing in the field or in the laboratory. The effect of consolidation ratios on the maximum DSM for two types of sand is investigated by using resonant column tests. And, an increment formula to obtain the maximum DSM for cases of consolidation ratio κc>1 is presented. The results indicate that the maximum DSM rises rapidly when κc is near 1 and then slows down, which means that the power function of the consolidation ratio increment κc-1 can be used to describe the variation of the maximum DSM due to κc>1. The results also indicate that the increase in the maximum DSM due to κc>1 is significantly larger than that predicted by Hardin and Black's formula. 相似文献
14.
The fabric anisotropy of a granular soil deposit can strongly infl uence its engineering properties and behavior. This paper presents the results of a novel experimental study designed to examine the effects of fabric anisotropy on smallstrain stiffness and its evolution with loading on the elastic shear modulus of granular materials under a K0 condition. Two primary categories of fabric anisotropy, i.e., deposition-induced and particle shape-induced, are investigated. Toyoura sand deposits with relative densities of 40% and 80% were prepared using deposition angles oriented at 0o and 90o. Piezoelectric transducers were used to obtain the elastic shear modulus in the vertical and horizontal directions(Gvh and Ghh). The measurements indicate distinct differences in the values of G with respect to the different deposition angles. Particle shapeinduced fabric anisotropy was examined using four selected sands. It was concluded that sphericity is a controlling factor dominating the small-strain stiffness of granular materials. The degree of fabric anisotropy proves to be a good indicatorin the characterization of stress-induced fabric evolution during loading and unloading stress cycles. The experimental data were used to calibrate an existing micromechanical model, which was able to represent the behavior of the granular material and the degree of fabric anisotropy reasonably well. 相似文献
15.
采用共振柱试验方法,研究了固结比对土最大动剪切模量的影响并给出了土最大动剪切模量的建议公式。通过对砂土、粉质黏土和粉土的系统试验,提出了不同固结比下土最大动剪切模量与固结比kc-1呈指数形式的增长模式,不同于Hard in公式最大动剪切模量与固结比kc呈直线形式的增长模式。同时给出了计算不同固结比下砂土、粉质黏土和粉土最大动剪切模量的建议公式,并与Hard in公式进行了对比,结果表明,固结比对土最大动剪切模量影响程度明显比Hard in公式要大,固结比对粉质黏土和粉土最大动剪切模量的影响程度要比对砂土的影响程度更大。 相似文献
16.
动剪切模量比和阻尼比是土体重要的动力特性参数,这两种参数取值的合理性对场地地震响应分析的结果有重要影响.为进一步完善黏性土的动剪切模量比和阻尼比随剪应变的变化关系的研究,给出了新的计算模型和推荐曲线.新曲线的计算模型基于Davidenkov模型和新的阻尼比计算模型,通过对搜集的大量黏性土数据进行非线性回归分析后得到.将分析结果与已有国内外学者的成果进行对比,验证了新计算模型具有较好的可靠性和工程实用性. 相似文献
17.
This paper investigates the cyclic and post-cyclic shear behavior of low-plasticity silt and the impact of additional clay content. Bentonite clay was added to the low-plasticity Mississippi River Valley (MRV) silt (PI=6) to increase the clay content of the soil. A series of triaxial tests were conducted in the laboratory to examine the shear and pore pressure behavior during and after cyclic loading. As the bentonite content in the reconstituted specimens increased, the excess pore pressure developed at a slower rate and the total excess pore pressure decreased at the end of cyclic loading. In contrast to the MRV silt, the specimens modified with bentonite experienced cyclic softening rather than initial flow liquefaction. The cyclic shear strength increased with an increase in bentonite content. The post-cyclic reconsolidation behavior was a similar to a virgin compression process, and not recompression. Adding bentonite to the MRV silt results in changes in permeability, compressibility, undrained shear strength, and initial stiffness. Additionally, the cyclic loading had a marked effect on the shear behavior of low-plasticity soil with a PI<6, but not noticeable with a PI>6. This study suggests that the behavior of the Mississippi River Valley silt changes from contractive sand-like material to clay-like behavior at a PI≈6 due to the addition of clay. 相似文献
18.
常规土类动剪切模量比和阻尼比试验研究 总被引:54,自引:9,他引:54
采用共振柱自振试验方法给出国内常规土类动剪切模量比G/Gmax和阻尼比λ变化的平均曲线,推荐值和包线,使用的共振仪是由工种力学研究所原有共振柱改装而成,并经试验验证了改装后仪器的精度可靠性,试验土类包括粘土,粉质土,粉土,砂土,淤泥和淤泥质土,土样来自国内十余个不同地区,采用折线双曲线拟合G/Gmax,λ随γ衰减关系,其中参数a和b由最小二乘法对每次试验结果回归分析得到,对同类土,将所有的a,b 值平均,用均值a和b给出动剪切模量比和阻尼比与剪应变关系,从而得到了此类土G/Gmax,λ随γ变化曲线及推荐值,试验是在两种固结压力下进行,因而得到的结构分别适用于土体埋深小于10m和埋深10m-20m之间的两种情况。 相似文献
19.
Cyclic shear response of channel-fill Fraser River Delta silt 总被引:2,自引:0,他引:2
The cyclic shear response of a channel-fill, low-plastic silt was investigated using constant-volume direct simple shear testing. Silt specimens, initially consolidated to stress levels at or above the preconsolidation stress, displayed cyclic-mobility-type strain development during cyclic loading without static shear stress bias. Liquefaction in the form of strain softening accompanied by loss of shear strength did not manifest regardless of the applied cyclic stress ratio, or the level of induced excess pore water pressure, suggesting that the silt is unlikely to experience flow failure under cyclic loading. The cyclic shear resistance of the silt increased with increasing overconsolidation ratio (OCR) for OCR>1.3. The silt specimens that experienced high equivalent excess cyclic pore water pressure ratios (ru>80%) resulted in considerable volumetric strains (2.5%–5%) during post-cyclic reconsolidation implying potentially significant changes to the particle fabric under cyclic loading. 相似文献