首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data assimilation techniques have been proven as an effective tool to improve model forecasts by combining information about observed variables in many areas. This article examines the potential of assimilating surface soil moisture observations into a field‐scale hydrological model, the Root Zone Water Quality Model, to improve soil moisture estimation. The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for nonlinear systems, was applied and compared with a simple direct insertion method. In situ soil moisture data at four different depths (5, 20, 40, and 60 cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were used for assimilation and validation purposes. Through daily update, the EnKF improved soil moisture estimation compared with the direct insertion method and model results without assimilation, having more distinct improvement at the 5 and 20 cm depths than for deeper layers (40 and 60 cm). Local vertical soil property heterogeneity in AS1 deteriorated soil moisture estimates with the EnKF. Removal of systematic bias in the forecast model was found to be critical for more successful soil moisture data assimilation studies. This study also demonstrates that a more frequent update generally contributes in enhancing the open loop simulation; however, large forecasting error can prevent more frequent update from providing better results. In addition, results indicate that various ensemble sizes make little difference in the assimilation results. An ensemble of 100 members produced results that were comparable with results obtained from larger ensembles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This study has applied evolutionary algorithm to address the data assimilation problem in a distributed hydrological model. The evolutionary data assimilation (EDA) method uses multi-objective evolutionary strategy to continuously evolve ensemble of model states and parameter sets where it adaptively determines the model error and the penalty function for different assimilation time steps. The assimilation was determined by applying the penalty function to merge background information (i.e., model forecast) with perturbed observation data. The assimilation was based on updated estimates of the model state and its parameterizations, and was complemented by a continuous evolution of competitive solutions.The EDA was illustrated in an integrated assimilation approach to estimate model state using soil moisture, which in turn was incorporated into the soil and water assessment tool (SWAT) to assimilate streamflow. Soil moisture was independently assimilated to allow estimation of its model error, where the estimated model state was integrated into SWAT to determine background streamflow information before they are merged with perturbed observation data. Application of the EDA in Spencer Creek watershed in southern Ontario, Canada generates a time series of soil moisture and streamflow. Evaluation of soil moisture and streamflow assimilation results demonstrates the capability of the EDA to simultaneously estimate model state and parameterizations for real-time forecasting operations. The results show improvement in both streamflow and soil moisture estimates when compared to open-loop simulation, and a close matching between the background and the assimilation illustrates the forecasting performance of the EDA approach.  相似文献   

3.
A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.  相似文献   

4.
Catchment scale hydrological models are critical decision support tools for water resources management and environment remediation. However, the reliability of hydrological models is inevitably affected by limited measurements and imperfect models. Data assimilation techniques combine complementary information from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has been demonstrated in land surface data assimilations, there are no systematic studies to investigate its performance in distributed modeling with high dimensional states and parameters. In this paper, we present an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements, and its sensitivities are analyzed with respect to the error specification, the initial realization and the ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF performance could be improved after augmenting with other complementary data, such as soil water content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the importance of consistent error specification and the potential with small ensemble size in the data assimilation system.  相似文献   

5.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Land surface processes and their initialisation are of crucial importance for Numerical Weather Prediction (NWP). Current land data assimilation systems used to initialise NWP models include snow depth analysis, soil moisture analysis, soil temperature and snow temperature analysis. This paper gives a review of different approaches used in NWP to initialise land surface variables. It discusses the observation availability and quality, and it addresses the combined use of conventional observations and satellite data. Based on results from the European Centre for Medium-Range Weather Forecasts (ECMWF), results from different soil moisture and snow depth data assimilation schemes are shown. Both surface fields and low-level atmospheric variables are highly sensitive to the soil moisture and snow initialisation methods. Recent developments of ECMWF in soil moisture and snow data assimilation improved surface and atmospheric forecast performance.  相似文献   

7.
This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, i.e. surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large‐scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows a variable difference between the two estimates. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail, including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the 1 cm surface layer was adjusted by 0·9 mm over a 10‐day period as a result of a 3 K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5 mm of moisture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or land surface (skin) temperature. Data assimilation can then be used to estimate variables that are not directly observed from space but are needed for applications, for instance root zone soil moisture or land surface fluxes. The paper provides a brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions. Our general overview is readily accessible to hydrologic remote sensing scientists. Within the general context of Earth science data assimilation, we point to examples of the assimilation of remotely sensed observations in land surface hydrology.  相似文献   

9.
Predicting long‐term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented a hierarchical Bayesian (HB) analysis to coherently admit multiple data sources and uncertainties including data inputs, parameters, and model structures to identify the potential consequences of climate change on soil moisture and streamflow at the head watersheds ranging from low to high elevations in the southern Appalachian region of the United States. We have considered climate change scenarios based on three greenhouse gas emission scenarios of the Interovernmental Panel on Climate Change: A2, A1B, and B1 emission scenarios. Full predictive distributions based on HB models are capable of providing rich information and facilitating the summarization of prediction uncertainties. With predictive uncertainties taken into account, the most pronounced change in soil moisture and streamflow would occur under the A2 scenario at both low and high elevations, followed by the A1B scenario and then by the B1 scenario. Uncertainty in the change of soil moisture is less than that of streamflow for each season, especially at high elevations. A reduction of soil moisture in summer and fall, a reduction or slight increase of streamflow in summer, and an increase of streamflow in winter are predicted for all three scenarios at both low and high elevations. The hydrological predictions with quantified uncertainties from a HB model could aid more‐informed water resource management in developing mitigation plans and dealing with water security under climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Soil moisture is a key hydrological variable in flood forecasting: it largely influences the partition of rain between runoff and infiltration and thus controls the flow at the outlet of a catchment. The methodology developed in this paper aims at improving the commonly used hydrological tools in an operational forecasting context by introducing soil moisture data into streamflow modelling. A sequential assimilation procedure, based on an extended Kalman filter, is developed and coupled with a lumped conceptual rainfall–runoff model. It updates the internal states of the model (soil and routing reservoirs) by assimilating daily soil moisture and streamflow data in order to better fit these external observations. We present in this paper the results obtained on the Serein, a Seine sub-catchment (France), during a period of about 2 years and using Time Domain Reflectivity probe soil moisture measurements from 0–10 to 0–100 cm and stream gauged data. Streamflow prediction is improved by assimilation of both soil moisture and streamflow individually and by coupled assimilation. Assimilation of soil moisture data is particularly effective during flood events while assimilation of streamflow data is more effective for low flows. Combined assimilation is therefore more adequate on the entire forecasting period. Finally, we discuss the adequacy of this methodology coupled with Remote Sensing data.  相似文献   

12.
With well-determined hydraulic parameters in a hydrologic model, a traditional data assimilation method (such as the Kalman filter and its extensions) can be used to retrieve root zone soil moisture under uncertain initial state variables (e.g., initial soil moisture content) and good simulated results can be achieved. However, when the key soil hydraulic parameters are incorrect, the error is non-Gaussian, as the Kalman filter will produce a persistent bias in its predictions. In this paper, we propose a method coupling optimal parameters and extended Kalman filter data assimilation (OP-EKF) by combining optimal parameter estimation, the extended Kalman filter (EKF) assimilation method, a particle swarm optimization (PSO) algorithm, and Richards’ equation. We examine the accuracy of estimating root zone soil moisture through the optimal parameters and extended Kalman filter data assimilation method by using observed in situ data at the Meiling experimental station, China. Results indicate that merely using EKF for assimilating surface soil moisture content to obtain soil moisture content in the root zone will produce a persistent bias between simulated and observed values. Using the OP-EKF assimilation method, estimates were clearly improved. If the soil profile is heterogeneous, soil moisture retrieval is accurate in the 0-50 cm soil profile and is inaccurate at 100 cm depth. Results indicate that the method is useful for retrieving root zone soil moisture over large areas and long timescales even when available soil moisture data are limited to the surface layer, and soil moisture content are uncertain and soil hydraulic parameters are incorrect.  相似文献   

13.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications.  相似文献   

15.
Land data assimilation (DA) has gradually developed into an important earth science research method because of its ability to combine model simulations and observations. Integrating new observations into a land surface model by the DA method can correct the predicted trajectory of the model and thus, improve the accuracy of state variables. It can also reduce uncertainties in the model by estimating some model parameters simultaneously. Among the various DA methods, the particle filter is free from the constraints of linear models and Gaussian error distributions, and can be applicable to any nonlinear and non-Gaussian state-space model; therefore, its importance in land data assimilation research has increased. In this study, a DA scheme was developed based on the residual resampling particle filter. Microwave brightness temperatures were assimilated into the macro-scale semi-distributed variance infiltration capacity model to estimate the surface soil moisture and three hydraulic parameters simultaneously. Finally, to verify the scheme, a series of comparative experiments was performed with experimental data obtained during the Soil Moisture Experiment of 2004 in Arizona. The results show that the scheme can improve the accuracy of soil moisture estimations significantly. In addition, the three hydraulic parameters were also well estimated, demonstrating the effectiveness of the DA scheme.  相似文献   

16.
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.  相似文献   

17.
In this study, uncertainty in model input data (precipitation) and parameters is propagated through a physically based, spatially distributed hydrological model based on the MIKE SHE code. Precipitation uncertainty is accounted for using an ensemble of daily rainfall fields that incorporate four different sources of uncertainty, whereas parameter uncertainty is considered using Latin hypercube sampling. Model predictive uncertainty is assessed for multiple simulated hydrological variables (discharge, groundwater head, evapotranspiration, and soil moisture). Utilizing an extensive set of observational data, effective observational uncertainties for each hydrological variable are assessed. Considering not only model predictive uncertainty but also effective observational uncertainty leads to a notable increase in the number of instances, for which model simulation and observations are in good agreement (e.g., 47% vs. 91% for discharge and 0% vs. 98% for soil moisture). Effective observational uncertainty is in several cases larger than model predictive uncertainty. We conclude that the use of precipitation uncertainty with a realistic spatio‐temporal correlation structure, analyses of multiple variables with different spatial support, and the consideration of observational uncertainty are crucial for adequately evaluating the performance of physically based, spatially distributed hydrological models.  相似文献   

18.
Abstract

The purpose of this paper is to present the methodology set up to derive catchment soil moisture from Earth Observation (EO) data using microwave spaceborne Synthetic Aperture Radar (SAR) images from ERS satellites and to study the improvements brought about by an assimilation of this information into hydrological models. The methodology used to derive EO data is based on the appropriate selection of land cover types for which the radar signal is mainly sensitive to soil moisture variations. Then a hydrological model is chosen, which can take advantage of the new information brought by remote sensing. The assimilation of soil moisture deduced from EO data into hydrological models is based principally on model parameter updating. The main assumption of this method is that the better the model simulates the current hydrological system, the better the following forecast will be. Another methodology used is a sequential one based on Kalman filtering. These methods have been put forward for use in the European AIMWATER project on the Seine catchment upstream of Paris (France) where dams are operated to alleviate floods in the Paris area.  相似文献   

19.
In this work, a dual-pass data assimilation scheme is developed to improve predictions of surface flux. Pass 1 of the dual-pass data assimilation scheme optimizes the model vegetation parameters at the weekly temporal scale, and Pass 2 optimizes the soil moisture at the daily temporal scale. Based on ensemble Kalman filter(EnKF), the land surface temperature(LST) data derived from the new generation of Chinese meteorology satellite(FY3A-VIRR) are assimilated into common land model(CoLM) for the first time. Six sites, Daman, Guantao, Arou, BJ, Miyun and Jiyuan, are selected for the data assimilation experiments and include different climatological conditions. The results are compared with those from a dataset generated by a multi-scale surface flux observation system that includes an automatic weather station(AWS), eddy covariance(EC) and large aperture scintillometer(LAS). The results indicate that the dual-pass data assimilation scheme is able to reduce model uncertainties and improve predictions of surface flux with the assimilation of FY3A-VIRR LST data.  相似文献   

20.
The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号