首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A pushover-based seismic risk assessment and loss estimation methodology for masonry buildings is introduced. It enables estimation of loss by various performance measures such as the probability of exceeding a designated economic loss, the expected annual loss, and the expected loss given a seismic intensity. The methodology enables the estimation of the economic loss directly from the results of structural analysis, which combines pushover analysis and incremental dynamic analysis of an equivalent SDOF model. The use of the methodology is demonstrated by means of two variants of a three-storey masonry building both of which have the same geometry, but they are built, respectively, from hollow clay masonry (model H) and solid brick masonry (model S). The probability of collapse given the selected design earthquake corresponding to a return period of 475 years was found to be negligible for model H, which indicates the proper behaviour of such a structure when designed according to the current building codes. However, the corresponding probability of collapse of model S was very high (46%). The expected total loss given the design earthquake was estimated to amount to 28 000 € and 290 000 €, respectively, for models H and S. The expected annual loss per 100 m2 of gross floor area was estimated to amount to 75 € and 191 €, respectively, for models H and S. For the presented examples, it was also observed that nonstructural elements contributed more than 50% of the total loss.  相似文献   

3.
The assessment of the static vulnerability under gravity loads of existing reinforced concrete (r.c.) framed buildings is a serious problem that requires the use of reliable methodologies to evaluate ductile and brittle mechanisms. The present work compares alternative formulations of member chord rotation and section and joint shear strength, proposed by Italian and European seismic codes and guidelines and other expressions available in the scientific literature. To this end, a r.c. framed building built sixty years ago with bi-directional (perimeter) and mono-directional (interior) plane frames, originally designed for five storeys then elevated to six during construction, is studied. A full characterization of the structure and its materials is carried out by means of destructive and non-destructive methods. Then, retrofitting based on the use of both innovative material, such as carbon fibre reinforced polymers (CFRP), and technology, such as base-isolation, are adopted to improve the static and seismic performances of the original structure. Finally, nonlinear analyses are carried out on a three-dimensional fibre model of the original and retrofitted structures, where an elastic linear law idealizes the behaviour of the CFRP up to tension failure and viscoelastic linear and bilinear models are used to idealize the behaviour of the elastomeric and sliding bearings, respectively.  相似文献   

4.
阴琨  李中宇  赵然  王业耀  金小伟 《湖泊科学》2020,32(5):1473-1483
以松花江流域为对象,利用2012-2015年底栖动物调查数据及生物完整性指数(index of biotic integrity,IBI)评价结果,定量分析并阐释了IBI(基于参照位点法)在时间尺度趋势分析中产生的偏差和影响,提出采用校正系数r(r表示参数赋分计算中,比较年参数基础值相对初始年参数基础值的倍数)及初始年数据对IBI结果进行校正的方法.研究表明,正向参数(干扰越大分值越低的参数)参照组2013-2015比较年的值较初始年(2012年)呈现不同程度升高,反向参数(干扰越大分值越高的参数)受损组值呈现下降.同时,正向参数和反向参数的r值分别分布在1.1~4.9和0.7~0.8之间,参照组/受损组参数的95th年度间变化显著,参数赋分环节的记分偏差不可忽略.在评价标准划分环节中,最差及优良区域占比的差异达10.0%~13.4%,偏差对趋势分析的干扰显著.2012-2015各年度IBI经校正后,评价达良好-优状态的区域占比较校正前高4.3%~13.3%,评价为很差状态的区域占比较校正前低6.7%~30.0%.完整性评价中关键环节产生的偏差可显著影响时间尺度趋势的分析和判定,基于校正的评价方法可以初步解决完整性评价在趋势分析中产生的偏差干扰问题.  相似文献   

5.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号