首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

2.
In this study, we proposed an automated lithological mapping approach by using spectral enhancement techniques and Machine Learning Algorithms (MLAs) using Airborne Visible Infrared Imaging Spectroradiometer-Next Generation (AVIRIS-NG) hyperspectral data in the greenstone belt of the Hutti area, India. We integrated spectral enhancement techniques such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) transformation and different MLAs for an accurate mapping of rock types. A conjugate utilization of conventional geological map and spectral enhancement products derived from ASTER data were used for the preparation of a high-resolution reference lithology map. Feature selection and extraction methods were applied on the AVIRIS-NG data to derive different input dataset such as (a) all spectral bands, (b) shortwave infrared bands, (c) Joint Mutual Information Maximization (JMIM) based optimum bands, and (d) optimum bands using PCA, to choose optimum input dataset for automated lithological mapping. The comparative analysis of different MLAs shows that the Support Vector Machine (SVM) outperforms other Machine Learning (ML) models. The SVM achieved an Overall Accuracy (OA) and Kappa Coefficient (k) of 85.48% and 0.83, respectively, using JMIM based optimum bands. The JMIM based optimum bands were more suitable than other input datasets to classify most of the lithological units (i.e. metabasalt, amphibolite, granite, acidic intrusive and migmatite) within the study area . The sensitivity analysis performed in this study illustrates that the SVM is less sensitive to the number of samples and mislabeling in the model training than other MLAs. The obtained high-resolution classified map with accurate litho-contacts of amphibolite, metabasalt, and granite can be coupled with an alteration map of the area for targeting the potential zone of gold mineralization.  相似文献   

3.
Mineral mapping is an important step for the development and utilization of mineral resources. The emergence of remote sensing technology, especially hyperspectral imagery, has paved a new approach to geological mapping. The k-means clustering algorithm is a classical approach to classifying hyperspectral imagery, but the influence of mixed pixels and noise mean that it usually has poor mineral mapping accuracy. In this study, the mapping accuracy of the k-means algorithm was improved in three ways: similarity measurement methods that are insensitive to dimensions are used instead of the Euclidean distance for clustering; the spectral absorption features of minerals are enhanced; and the mineral mapping results are combined as the number of cluster centers (K) is incremented from 1. The improved algorithm is used with combined spectral matching to match the clustering results with a spectral library. A case study on Cuprite, Nevada, demonstrated that the improved k-means algorithm can identify most minerals with the kappa value of over 0.8, which is 46% and 15% higher than the traditional k-means and spectral matching technology. New mineral types are more likely to be found with increasing K. When K is much greater than the number of mineral types, the accuracy is improved, and the mineral mapping results are independent of the similarity measurement method. The improved k-means algorithm can also effectively remove speckle noise from the mineral mapping results and be used to identify other objects.  相似文献   

4.
This study presents the calculation of spectral angle beyond two endmember vectors to the n-dimensional solid spectral angle (NSSA). The calculation of the NSSA is used to characterize the local spectral shape difference among a set of endmembers, leading to a methodology for band selection based on spectral shape variations of more than two spectra. Equidistributed sequences used in the quasi-Monte Carlo method (ESMC) for numerical simulations are shown to expedite the calculation of the NSSA. We develop a band selection method using the computation of NSSA(ϑn) in the context of a sliding window. By sliding the window over all bands available for varying band intervals, the calculated solid spectral angle values can capture the similarity of the endmembers over all spectral regions available and for spectral features of varying widths. By selecting a subset of spectral bands with largest solid spectral angles, a methodology can be developed to capture the most important spectral information for the separation or mapping of endmembers. We provide an example of the merits of the NSSA-ESMC method for band selection as applied to linear spectral unmixing. Specifically, we examine the endmember abundance errors resulting from the NSSA band selection method as opposed to using the full spectral dimensionality available.  相似文献   

5.
Desertification is a severe stage of land degradation, manifested by “desert-like” conditions in dryland areas. Climatic conditions together with geomorphologic processes help to mould desert-like soil surface features in arid zones. The identification of these soil features serves as a useful input for understanding the desertification process and land degradation as a whole. In the present study, imaging spectrometer data were used to detect and map desert-like surface features. Absorption feature parameters in the spectral region between 0.4 and 2.5 μm wavelengths were analysed and correlated with soil properties, such as soil colour, soil salinity, gypsum content, etc. Soil groupings were made based on their similarities and their spectral reflectance curves were studied. Distinct differences in the reflectance curves throughout the spectrum were exhibited between groups. Although the samples belonging to the same group shared common properties, the curves still showed differences within the same group.Characteristic reflectance curves of soil surface features were derived from spectral measurements both in the field and in the laboratory, and mean reflectance values derived from image pixels representing known features. Linear unmixing and spectral angle matching techniques were applied to assess their suitability in mapping surface features for land degradation studies. The study showed that linear unmixing provided more realistic results for mapping “desert-like” surface features than the spectral angle matching technique.  相似文献   

6.
The objective of this research is to select the most sensitive wavelengths for the discrimination of the imperceptible spectral variations of paddy rice under different cultivation conditions. The paddy rice was cultivated under four different nitrogen cultivation levels and three water irrigation levels. There are 2151 hyperspectral wavelengths available, both in hyperspectral reflectance and energy space transformed spectral data. Based on these two data sets, the principal component analysis (PCA) and band-band correlation methods were used to select significant wavelengths with no reference to leaf biochemical properties, while the partial least squares (PLS) method assessed the contribution of each narrow band to leaf biochemical content associated with each loading weight across the nitrogen and water stresses. Moreover, several significant narrow bands and other broad bands were selected to establish eight kinds of wavelength (broad-band) combinations, focusing on comparing the performance of the narrow-band combinations instead of broad-band combinations for rice supervising applications. Finally, to investigate the capability of the selected wavelengths to diagnose the stress conditions across the different cultivation levels, four selected narrow bands (552, 675, 705 and 776 nm) were calculated and compared between nitrogen-stressed and non-stressed rice leaves using linear discriminant analysis (LDA). Also, wavelengths of 1158, 1378 and 1965 nm were identified as the most useful bands to diagnose the stress condition across three irrigation levels. Results indicated that good discrimination was achieved. Overall, the narrow bands based on hyperspectral reflectance data appear to have great potential for discriminating rice of differing cultivation conditions and for detecting stress in rice vegetation; these selected wavelengths also have great potential use for the designing of future sensors.  相似文献   

7.
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.  相似文献   

8.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

9.
Originally developed to classify multispectral and hyperspectral images, spectral mapping methods were used to classify Light Detection and Ranging (LiDAR) data to estimate the vertical structure of vegetation for Fuel Type (FT) mapping. Three spectral mapping methods generated spatially comprehensive FT maps for Cabañeros National Park (Spain): (1) Spectral Mixture Analysis (SMA), (2) Spectral Angle Mapper (SAM), and (3) Multiple Endmember Spectral Mixture Analysis (MESMA). The Vegetation Vertical Profiles (VVPs) describe the vertical distribution of the vegetation and are used to define each FT endmember in a LiDAR signature library. Two different approaches were used to define the endmembers, one based on the field data collected in 1998 and 1999 (Approach 1) and the other on exploring spatial patterns of the singular FT discriminating factors (Approach 2). The overall accuracy is higher for Approach 2 and with best results when considering a five-FT model rather than a seven-FT model. The agreement with field data of 44% for MESMA and SMA and 40% for SAM is higher than the 38% of the official Cabañeros National Park FTs map. The principal spatial patterns for the different FTs were well captured, demonstrating the value of this novel approach using spectral mapping methods applied to LiDAR data. The error sources included the time gap between field data and LiDAR acquisition, the steep topography in parts of the study site, and the low LiDAR point density among others.  相似文献   

10.
Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).  相似文献   

11.
马睿  张晓帆  陈川 《遥感学报》2015,19(2):195-208
本文运用ASTER遥感数据识别与提取新疆南天山铜花山地区蛇绿混杂岩带岩性信息。首先,利用比值法快速区别岩性,并比较了识别同一种岩性的不同指数的性能;然后,将对数残差算法应用在ASTER数据的短波红外波段上,在区域尺度上把蛇绿岩杂岩体同围岩区分开来;最后,运用标准光谱数据和光谱角填图法识别出多种蛇绿岩成分及其空间分布。现有地质图和野外验证反映出该方法有一定效果。利用混淆矩阵对光谱角填图法分类结果定量评价,结果表明,把ASTER的可见光-近红外、短波红外波段数据结合在一起进行岩性分类,可以达到比单独用短波红外数据分类更高的分类精度。  相似文献   

12.
Hyperspectral data acquired over hundreds of narrow contiguous wavelength bands are extremely suitable for target detection due to their high spectral resolution. Though spectral response of every material is expected to be unique, but in practice, it exhibits variations, which is known as spectral variability. Most target detection algorithms depend on spectral modelling using a priori available target spectra In practice, target spectra is, however, seldom available a priori. Independent component analysis (ICA) is a new evolving technique that aims at finding out components which are statistically independent or as independent as possible. The technique therefore has the potential of being used for target detection applications. A assessment of target detection from hyperspectral images using ICA and other algorithms based on spectral modelling may be of immense interest, since ICA does not require a priori target information. The aim of this paper is, thus, to assess the potential of ICA based algorithm vis a vis other prevailing algorithms for military target detection. Four spectral matching algorithms namely Orthogonal Subspace Projection (OSP), Constrained Energy Minimisation (CEM), Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM), and four anomaly detection algorithms namely OSP anomaly detector (OSPAD), Reed–Xiaoli anomaly detector (RXD), Uniform Target Detector (UTD) and a combination of Reed–Xiaoli anomaly detector and Uniform Target Detector (RXD–UTD) were considered. The experiments were conducted using a set of synthetic and AVIRIS hyperspectral images containing aircrafts as military targets. A comparison of true positive and false positive rates of target detections obtained from ICA and other algorithms plotted on a receiver operating curves (ROC) space indicates the superior performance of the ICA over other algorithms.  相似文献   

13.
Thermal infrared remote sensing (8–12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum–minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature–emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32–1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.  相似文献   

14.
In geological imaging spectrometry (i.e., hyperspectral remote sensing), surface compositional information (e.g., mineralogy and subsequently chemistry) is obtained by statistical comparison (by means of spectral matching algorithms) of known field- or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been given to comparison of the performance of the various spectral matching algorithms. Four spectral measures are presented: three that calculate the angle (spectral angle measure, SAM), the vector distance (Euclidean distance measure, ED) or the vector cross-correlation (spectral correlation measure, SCM), between a known reference and unknown target spectrum and a fourth measure that measures the discrepancy of probability distributions between two pixel vectors (the spectral information divergence, SID). The performance of these spectral similarity measures is compared using synthetic hyperspectral and real (i.e., Airborne Visible Infrared Imaging Spectrometer, AVIRIS) hyperspectral data of a (artificial or real) hydrothermal alteration system characterised by the minerals alunite, kaolinite, montmorillonite and quartz. Two statistics are used to assess the performance of the spectral similarity measures: the probability of spectral discrimination (PSD) and the power of spectral discrimination (PWSD). The first relates to the ability of the selected set of spectral endmembers to map a target spectrum, whereas the second expresses the capability of a spectral measure to separate two classes relative to a reference class. Analysis of the synthetic data set (i.e., simulated alteration zones with crisp boundaries at 1–2 nm spectral resolution) shows that (1) the SID outperforms the classical empirical spectral matching techniques (SAM, SCM and ED), (2) that SCM (SID, SAM and ED do not) exploits the overall shape of the reflectance curve and hence its outcomes are (positively and negatively) affected by the spectral range selected, (3) SAM and ED give nearly similar results and (4) for the same reason as in (2), the SCM is also more sensitive (again in positive and negative sense) to the spectral noise added. Results from the study of AVIRIS data show that SAM yields more spectral confusion (i.e., class overlap) than SID and SCM. In turn, SID is more effective in mapping the four target minerals than SCM as it clearly outperforms SCM when the target mineral coincides with the mineral phase on the ground.  相似文献   

15.
Most studies have the achieved rapid and accurate determination of soil organic carbon (SOC) using laboratory spectroscopy; however, it remains difficult to map the spatial distribution of SOC. To predict and map SOC at a regional scale, we obtained fourteen hyperspectral images from the Gaofen-5 (GF-5) satellite and decomposed and reconstructed the original reflectance (OR) and the first derivative reflectance (FDR) using discrete wavelet transform (DWT) at different scales. At these different scales, as inputs, we selected the 3 optimal bands with the highest weight coefficient using principal component analysis and chose the normalized difference index (NDI), ratio index (RI) and difference index (DI) with the strongest correlation with the SOC content using a contour map method. These inputs were then used to build regional-scale SOC prediction models using random forest (RF), support vector machine (SVM) and back-propagation neural network (BPNN) algorithms. The results indicated that: 1) at a low decomposition scale, DWT can effectively eliminate the noise in satellite hyperspectral data, and the FDR combined with DWT can improve the SOC prediction accuracy significantly; 2) the method of selecting inputs using principal component analysis and a contour map can eliminate the redundancy of hyperspectral data while retaining the physical meaning of the inputs. For the model with the highest prediction accuracy, the inputs were all derived from the wavelength range of SOC variations; 3) the differences in prediction accuracy among the different prediction models are small; and 4) the SOC prediction accuracy using hyperspectral satellite data is greatly improved compared with that of previous SOC prediction studies using multispectral satellite data. This study provides a highly robust and accurate method for predicting and mapping regional SOC contents.  相似文献   

16.
The impact of band selection on endmember selection is seldom explored in the analysis of hyperspectral imagery. This study incorporates the N-dimensional Spectral Solid Angle (NSSA) band selection tool into the Spectral-Spatial Endmember Extraction (SSEE) tool to determine a band set that can be used to better define endmembers classes used in spectral mixture analysis. The incorporation aims to define a band set that improves the spectral contrast between endmembers at each step of the spatial-spectral endmember search and ultimately captures key features for discriminating spectrally similar materials. The proposed method (NSSA-SSEE) was evaluated for lithological mapping using a hyperspectral image encompassing a range of spectrally similar mafic and ultramafic rock units. The band selected by NSSA-SSEE showed a good agreement with known features of scene components identified by experts. Results showed an improvement in the selection of detailed endmembers, endmembers that are similar and that can be significant for mapping. The incorporation of NSSA into SSEE was feasible because both methods are well suited for this process. NSSA is one of the few methods of band selection that is suitable for the analysis of a small number of endmembers and SSEE provides such endmember sets via spatial subsetting. The automated NSSA-SSEE approach can reduce the need for field-based information to guide the feature selection process.  相似文献   

17.
This is a review of the latest developments in different fields of remote sensing for forest biomass mapping. The main fields of research within the last decade have focused on the use of small footprint airborne laser scanning systems, polarimetric synthetic radar interferometry and hyperspectral data. Parallel developments in the field of digital airborne camera systems, digital photogrammetry and very high resolution multispectral data have taken place and have also proven themselves suitable for forest mapping issues. Forest mapping is a wide field and a variety of forest parameters can be mapped or modelled based on remote sensing information alone or combined with field data. The most common information required about a forest is related to its wood production and environmental aspects. In this paper, we will focus on the potential of advanced remote sensing techniques to assess forest biomass. This information is especially required by the REDD (reducing of emission from avoided deforestation and degradation) process. For this reason, new types of remote sensing data such as fullwave laser scanning data, polarimetric radar interferometry (polarimetric systhetic aperture interferometry, PolInSAR) and hyperspectral data are the focus of the research. In recent times, a few state-of-the-art articles in the field of airborne laser scanning for forest applications have been published. The current paper will provide a state-of-the-art review of remote sensing with a particular focus on biomass estimation, including new findings with fullwave airborne laser scanning, hyperspectral and polarimetric synthetic aperture radar interferometry. A synthesis of the actual findings and an outline of future developments will be presented.  相似文献   

18.
Flagrant soil erosion in Morocco is an alarming sign of soil degradation. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. In this paper, we characterize the state of land degradation in a small Mediterranean watershed using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and ground-based spectroradiometric measurements. The two visible, the near-infrared and six shortwave infrared bands of the above sensor were calibrated using ground measurements of the spectral reflectance. Field measurements were carried out in the Saboun experimental basin located in the marl soil region of the Moroccan western Rif. The study leads to the development and evaluation of a new spectral approach to express land degradation. This index called Land degradation index (LDI) is based on the concept of the soil line derived from spectroradiometric ground measurements. In this study, we compare LDI and the spectral angle mapping (SAM) approaches to assess and map land degradation. Results show that LDI provides more accurate results for mapping land degradation (Kappa = 0.79) when compared to the SAM method (Kappa = 0.61). Validation and evaluation of the results are based on the thematic maps derived from the ground data (organic matter, clay, silt and sand) by kriging, DEM, slope gradient and photointerpretation.  相似文献   

19.
Inland water bodies are globally threatened by environmental degradation and climate change. On the other hand, new water bodies can be designed during landscape restoration (e.g. after coal mining). Effective management of new water resources requires continuous monitoring; in situ surveys are, however, extremely time-demanding. Remote sensing has been widely used for identifying water bodies. However, the use of optical imagery is constrained by accuracy problems related to the difficulty in distinguishing water features from other surfaces with low albedo, such as tree shadows. This is especially true when mapping water bodies of different sizes. To address these problems, we evaluated the potential of integrating hyperspectral data with LiDAR (hereinafter “integrative approach”). The study area consisted of several spoil heaps containing heterogeneous water bodies with a high variability of shape and size. We utilized object-based classification (Support Vector Machine) based on: (i) hyperspectral data; (ii) LiDAR variables; (iii) integration of both datasets. Besides, we classified hyperspectral data using pixel-based approaches (K-mean, spectral angle mapper). Individual approaches (hyperspectral data, LiDAR data and integrative approach) resulted in 2–22.4 % underestimation of the water surface area (i.e, omission error) and 0.4–1.5 % overestimation (i.e., commission error).The integrative approach yielded an improved discrimination of open water surface compared to other approaches (omission error of 2 % and commission error of 0.4 %). We also evaluated the success of detecting individual ponds; the integrative approach was the only one capable of detecting the water bodies with both omission and commission errors below 10 %. Finally, the assessment of misclassification reasons showed a successful elimination of shadows in the integrative approach. Our findings demonstrate that the integration of hyperspectral and LiDAR data can greatly improve the identification of small water bodies and can be applied in practice to support mapping of restoration process.  相似文献   

20.
Quantification of crop residue biomass on cultivated lands is essential for studies of carbon cycling of agroecosystems, soil-atmospheric carbon exchange and Earth systems modeling. Previous studies focus on estimating crop residue cover (CRC) while limited research exists on quantifying crop residue biomass. This study takes advantage of the high temporal resolution of the China Environmental Satellite (HJ-1) data and utilizes the band configuration features of HJ-1B data to establish spectral angle indices to estimate crop residue biomass. Angles formed at the NIRIRS vertex by the three vertices at R, NIRIRS, and SWIR (ANIRIRS) of HJ-1B can effectively indicate winter wheat residue biomass. A coefficient of determination (R2) of 0.811 was obtained between measured winter wheat residue biomass and ANIRIRS derived from simulated HJ-1B reflectance data. The ability of ANIRIRS for quantifying winter wheat residue biomass using HJ-1B satellite data was also validated and evaluated. Results indicate that ANIRIRS performed well in estimating winter wheat residue biomass with different residue treatments; the root mean square error (RMSE) between measured and estimated residue biomass was 0.038 kg/m2. ANIRIRS is a potential method for quantifying winter wheat residue biomass at a large scale due to wide swath width (350 km) and four-day revisit rate of the HJ-1 satellite. While ANIRIRS can adequately estimate winter wheat residue biomass at different residue moisture conditions, the feasibility of ANIRIRS for winter wheat residue biomass estimation at different fractional coverage of green vegetation and different environmental conditions (soil type, soil moisture content, and crop residue type) needs to be further explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号