首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An extensive forced‐vibration testing programme has been carried out on an 84‐m concrete gravity dam located in northeastern Québec, Canada. The dam was subjected to a harmonic load on the crest in summer and severe winter conditions with temperatures ranging from ?10°C to ?15°C and a 1.0–1.5m ice cover. Acceleration and hydrodynamic frequency responses were obtained in different locations on the dam and in the reservoir. The main objective of the repeated tests was to investigate the effects of the ice cover on the dynamic behaviour of the dam–reservoir–foundation system, by comparing summer and winter results. Modifications in damping and resonance frequencies were observed, as well as an additional resonance that was attributed to an interaction of the dam with the ice cover. These findings provided a reliable and unique database for the investigations of dam–reservoir–foundation interaction and, in particular, the ice‐cover effects for dams located in northern regions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Ambient vibration tests were conducted on a 56 metre high concrete gravity dam to measure its modal properties for validating a finite element model of the dam–reservoir–foundation system. Excitation was provided by wind, by reservoir water cascading down the spillweir, and by the force of water released through outlet-pipes. Vibrations of the dam were measured using accelerometers, and 3-hour data records were acquired from each location. Data were processed by testing for stationarity and rejecting non-stationary portions before Fourier analysis. Power spectra with low variance were generated from which natural frequencies of the dam were identified clearly and modal damping factors estimated. Modal analysis of the frequency response spectra yielded mode shapes for the six lowest lateral modes of vibration of the dam. The finite element model for the dam was analysed using EACD-3D, and the computed mode shapes and natural frequencies compared well with the measured results. The study demonstrates that ambient vibration testing can offer a viable alternative to forced vibration testing when only the modal properties of a dam are required. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of this study is to investigate the effect of retrofitting dynamic characteristics of a damaged laboratory arch dam model, subsequently repaired with high-strength structural mortar and strengthened with composite carbon fiber reinforced polymer. This study constructed in laboratory conditions is a prototype arch dam–reservoir–foundation model. Five test cases of ambient vibration on the arch dam model illustrate the changes in dynamic characteristics: natural frequency, mode shape, and damping ratio, before and after retrofitting. The ambient vibration tests collected data from the dam body during vibrations by natural excitations which provided small impacts and response signals from sensitivity accelerometers placed at crest points. Enhanced Frequency Domain Decomposition Method in the frequency domain extracts the experimental dynamic characteristics. At the end of the study, experimentally identified dynamic characteristics obtained from all test cases have been compared with each other. Apparently, after the retrofitting, the natural frequencies of the dam body increased considerably, demonstrating that the retrofitting, including repairing and strengthening is very effective on the flashback of initial dynamic characteristics.  相似文献   

5.
Vibration tests were conducted on a 1/24-scale model of the North Fork Dam, a double-curvature arch dam, to determine natural frequencies, mode shapes and hydrodynamic pressures. The mode shapes and natural frequencies were determined from tests using two vibrators mounted on the crest of the dam. Hydrodynamic pressures at the dam/reservoir interface were determined from tests in which the vibrator was attached to the downstream foundation of the dam. The hydrodynamic pressures calculated using Westergaard's theory and a theory for arch dams developed by Perumalswami and Kar accurately predicted the measured pressure at frequencies below the first mode frequency of the dam. The differences in the two theories were insignificant. The Structural Analysis Program (SAP), a linear three-dimensional (3-D) finite element code, was used to compute mode shapes and frequencies for the dam with its base fixed and with a foundation. Numerical solution schemes used in the finite element analysis consisted of a Ritz analysis and a subspace iteration method. Calculations were conducted for both full and empty reservoir conditions. The accuracy of the Ritz analysis improved considerably as more nodes in flexible regions of the dam were loaded. However, the lowest eigenvalues were computed using the subspace iteration method. For the full reservoir, the natural frequencies decreased by 20-30 per cent when the foundation was included in the finite element model. The difference was less when the reservoir was empty. The calculations using the subspace iteration scheme and including the foundation agreed closely with experimental mode shapes and corresponding natural frequencies.  相似文献   

6.
The characterization of the dynamic behavior of an arch dam, and its evolution throughout the structure's lifetime, provides important data for the safety control process. Forced vibration tests remain a reliable technique for this purpose. The Baixo Sabor dam is a 123 m high arch dam recently built in Portugal. Forced vibration tests were performed before and after the reservoir filling. Two techniques for forced vibration test are compared, discrete frequency scanning, the standard methodology, and continuous frequency scanning (sine sweep), a new proposed methodology, which allowed faster results without loss of precision. For the interpretation of test results two numerical models of the dam-reservoir-foundation system were built, and calibrated with the experimental data. A good match of numerical and experimental results was obtained for the six lowest frequencies and corresponding mode shapes.  相似文献   

7.
The dynamics of a coupled concrete gravity dam-intake tower–reservoir water–foundation rock system is numerically studied considering two hollow slender towers submerged in reservoir of gravity dam. The system is investigated in the frequency-domain using frequency response functions of the dam and the towers, and in the time-domain using time-history seismic analysis under a real earthquake ground motion. The analyzes are separately conducted under horizontal and vertical ground motions. The coupled system is three-dimensionally modeled using finite elements by Eulerian–Lagrangian approach. It is shown that presence of the dam significantly influences the dynamic response of the towers under both horizontal and vertical excitations; however the dam is not affected by the towers. When the dam is present in the model, the water contained inside the towers has different effects if the foundation is rigid, but it alleviates the towers motion if the foundation is flexible. It is concluded that the effects of foundation interaction are of much importance in the response of tall slender towers when they are located near concrete gravity dams.  相似文献   

8.
A modal analysis procedure based on an FE–BE method in the time domain is first formulated and then applied to a dam–foundation system. In the application, horizontal and vertical impulsive responses are calculated for the system having six different impedance ratios. Modal characteristics such as natural frequencies, damping ratios and mode shapes are evaluated from the Fourier spectra of the responses. The proposed procedure allows analysis of not only the underdamped but also the overdamped modes. According to the analysis, the radiation damping pertinent to the vertical vibration is half of that pertinent to the horizontal vibration and the interaction effect on the modes is not negligibly small when the impedance ratio exceeds 0·3.  相似文献   

9.
Two-dimensional analytical elastic models are developed for evaluating dynamic characteristics, namely natural frequencies and modes of vibration of a wide class of earth dams in a direction parallel to the dam axis. In these models the non-homogeneity of the dam materials is taken into account by assuming a specific variation of the stiffness properties along the depth (due to the continuous increase in confining pressure). In addition, both shear and normal (axial) deformations are considered. Cases having constant elastic moduli, linear and trapezoidal variations of elastic moduli, and elastic moduli increasing as the one-half, one-third, two fifths, and a general (l/m)th powers of the depth are studied. Dynamic properties of three real earth dams in a seismically active area (Southern California) estimated from their earthquake records (input ground motion and crest response in the longitudinal direction) as well as results from full-scale dynamic tests on one of these dams (including ambient and forced vibration tests) are compared with those from the suggested models. It was found that the models in which the shear modulus and the modulus of elasticity of the dam material vary along the depth are the most appropriate representations for predicting the dynamic characteristics. The agreement between the experimental and earthquake data and the theoretical results from some of the models is reasonably good.  相似文献   

10.
A magnitude 4.3 earthquake occurred near Pacoima Dam on 13 January 2001. An accelerometer array that had been upgraded after the Northridge earthquake recorded the motion with 17 channels on the dam and the dam–foundation interface. Using this data, properties of the first two modes are found from a system identification study. Modal properties are also determined from a forced vibration experiment performed in 2002 and indicate a significantly stiffer system than is estimated from the 2001 earthquake records. The 2001 earthquake, although small, must have induced temporary nonlinearity. This has implications for structural health monitoring. The source of the nonlinear behaviour is believed to be loss of stiffness in the foundation rock. A finite element model of Pacoima Dam is constructed and calibrated to match modal properties determined from the system identification study. A dynamic simulation of the 2001 earthquake response produces computed motions that agree fairly well with the recorded ones. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Forced vibration tests designed to isolate the effects of soil-structure interaction are described and the results obtained for the nine-storey reinforced concrete Millikan Library Building are analysed. It is shown that it is possible to determine experimentally the fixed-base natural frequencies and modal damping ratios of the superstructure. These values may be significantly different from the resonant frequencies and damping ratios of the complete structure-foundation-soil system. It is also shown that forced vibration tests can be used to obtain estimates of the foundation impedance functions. In the case of the Millikan Library it is found that during forced vibration tests the rigid-body motion associated with translation and rocking of the base accounts for more than 30 per cent of the total response on the roof and that the deformation of the superstructure at the fundamental frequencies of the system is almost entirely due to the inertial forces generated by translation and rocking of the base.  相似文献   

12.
An extensive programme of full-scale ambient vibration tests has been conducted to measure the dynamic response of a 542 m (centre span of 274 m) cable-stayed bridge—the Quincy Bayview Bridge in Illinois. A microcomputer-based system was used to collect and analyse the ambient vibration data. A total of 25 modal frequencies and associated mode shapes were identified for the deck structure within the frequency range of 0–2 Hz. Also, estimations were made for damping ratios. The experimental data clearly indicated the occurrence of many closely spaced modal frequencies and spatially complicated mode shapes. Most tower modes were found to be associated with the deck modes, implying a considerable interaction between the deck and tower structure. No detectable levels of motion were evident at the foundation support of the pier. The results of the ambient vibration survey were compared to modal frequencies and mode shapes computed using a three-dimensional finite element model of the bridge. For most modes, the analytic and experimental modal frequencies and mode shapes compare quite well, especially for the vertical modes. Based on the findings of this study, a linear elastic finite element model appears to be capable of capturing much of the complex dynamic behaviour of the bridge with very good accuracy, when compared to the low-level dynamic responses induced by ambient wind and traffic excitations.  相似文献   

13.
This paper presents the experimental programme and results of a continuous ambient vibrations recording programme carried out on the 250 m arch dam of Mauvoisin. This project follows a series of previous measurements completed for seven different water levels. An automated system was set up on the dam and the ambient vibrations were recorded twice daily for a period of 6 months. Frequency shifts were tracked throughout the testing period and the effects of the varying water level were identified. The results confirmed the behaviour observed in previous ambient‐ and forced‐vibration tests. The added‐mass effects are overcome by the stiffening of the dam due to increasing hydrostatic pressure for lower reservoir levels. This trend is then reversed for higher water levels. Any temperature‐related effects were not identified. The experimental techniques are briefly described and the frequency identification process and its limitations are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
By coupling FEM and BEM, a numerical method was developed for dynamic response analyses of dam–foundation–reservoir systems in the time domain. During formulation, the weighted residual procedure was applied to the coupling of several equations of motion for solid and fluid in the FE and BE regions, and an algorithm similar to the Newmark beta procedure was finally obtained. The algorithm is advantageous in that it takes into account all the effects of dam–foundation, dam–reservoir and reservoir–foundation interactions, as well as of the absorption of both elastodynamic and hydrodynamic waves at the boundaries of the foundation and the reservoir. To demonstrate the validity of the present method, the impulsive response of a dam–foundation–reservoir system was calculated using the algorithm, and showed a good agreement with the existing results obtained by other researchers.  相似文献   

15.
The ambient and forced vibration techniques for testing full-scale structures are critically compared. Both methods, based on small level excitation, may be used to determine many mode shapes and frequencies of vibration and the corresponding damping values, with adequate accuracy for most purposes. The two techniques give mutually consistent results. The mode amplitudes determined by ambient and forced vibration tests show systematic departure for high modes and near the top levels of buildings tested. This phenomenon is attributed to the participation of all mode shapes and is a consequence of excitation by a concentrated force near the top of a building and at a frequency differing by only a few per cent from a natural frequency of vibrations. A new way of showing the effect of unwanted modes on the response near resonance of the mode being sought is developed. It is particularly useful for the analysis of steady, forced vibration tests of structures using eccentric mass vibration generators.  相似文献   

16.
Dynamic tests were conducted on a 50 m high intake tower at Wimbleball dam in the U.K. The results were compared against predictions from a corresponding numerical model. The aim of this work was to validate the assumption that the compressibility of the reservoir water is not a significant factor in the seismic analysis of intake towers. Three sets of tests were conducted on different occasions with different water levels in the reservoir. In the first two tests, modal characteristics of the tower were determined from the measured responses under ambient, hammer and human excitation. These results were used in planning the final set of tests where rotating eccentric mass exciters were used to vibrate the tower. Structural accelerations and hydrodynamic pressures were measured over the height of the tower for three important bending modes of vibration. The finite element method was used to develop a numerical model for Wimbleball tower. The tower was discretized with traditional solid elements and the reservoir with incompressible fluid elements. This model was analysed to predict the modal characteristics and harmonic responses of the tower and reservoir under the various conditions imposed during the dynamic tests. Theoretical predictions of the tower's accelerations and hydrodynamic pressures in the reservoir were compared against the test results. Excellent agreement was found for the natural frequencies and mode shapes while predictions of the harmonic responses were only fair. The observed responses of the tower and reservoir support the assumption that reservoir compressibility is not a significant factor in the seismic analysis of towers of this size.  相似文献   

17.
This purpose of this paper is to study the dynamic characteristics of the Fei-Tsui arch dam using the seismic response data and the ambient vibration data. For the identification of dam properties from seismic response data, the multiple inputs from the abutment of the dam to represent the nonuniform excitations of seismic input motion are considered, and the ARX model is applied using the discrete-time linear filtering approach with least-squares approximation to identify the dynamic characteristics of the dam. The system modal dampings, natural frequencies and frequency response functions are identified. A comparison of the identified modal parameters is made among different seismic events. Post-earthquake safety evaluation of the dam can be made based on the identified model. Finally, the ambient vibration test of the dam is performed to identify the mode shapes along the dam crest.  相似文献   

18.
A general procedure for analysis of the response of gravity dams, including hydrodynamic interaction and compressibility of water, to the transverse horizontal and vertical components of earthquake ground motion is presented. The problem is reduced to one in two dimensions considering the transverse vibration of a monolith of a dam, and the material behaviour is assumed to be linearly elastic The complete system is considered as composed of two substructures—the dam, represented as a finite element system, and the reservoir, as a continuum of infinite length in the upstream direction governed by the wave equation. The structural displacements of the dam (including effects of water) are expressed as a linear combination of the modes of vibration of the dam with the reservoir empty. The effectiveness of this analytical formulation lies in its being able to produce excellent results by considering only the first few modes. The complex frequency response for the modal displacements are obtained first. The responses to arbitrary ground motion are subsequently obtained with the aid of the Fast Fourier Transform algorithm An example analysis is presented to illustrate results obtained from this method. It is concluded that the method is very effective and efficient and is capable of producing results to any desired degree of accuracy by including the necessary number of modes of vibration of the dam.  相似文献   

19.
设计并完成了野外大比例(1:2)土-箱形基础-框架结构相互作用系统顶部小幅激振试验.通过改变上部结构质量和基础侧限埋深,激振试验得到了同一基础不同上部结构质量与同一上部结构不同基础侧限埋深等5种工况下相互作用对系统自振频率及箱形基础阻抗函数的影响.由试验结果分析可知,当上部结构质量增加时,上部结构与土体间的相对刚度降低,相互作用对系统自振频率的影响减弱;同时由于上部结构和基础间惯性相互作用的影响,基础阻抗函数随上部结构质量的增加而增加.随着基础侧限埋深的减小,基础刚度降低,相互作用体现得更加明显.与理论结果相比,无侧限埋深基础的平动和转动基础阻抗值和理论值吻合较好.由于基础侧边回填土剪切模量小于基础底部土体剪切模量,所以同理论值相比试验得到的基础侧限埋深对基础阻抗影响系数相对较小.  相似文献   

20.
设计并完成了野外大比例(1∶2)土-箱形基础-框架结构相互作用系统顶部小幅激振试验。通过改变上部结构质量和基础侧限埋深,激振试验得到了同一基础不同上部结构质量与同一上部结构不同基础侧限埋深等5种工况下相互作用对系统自振频率及箱形基础阻抗函数的影响。由试验结果分析可知,当上部结构质量增加时,上部结构与土体间的相对刚度降低,相互作用对系统自振频率的影响减弱;同时由于上部结构和基础间惯性相互作用的影响,基础阻抗函数随上部结构质量的增加而增加。随着基础侧限埋深的减小,基础刚度降低,相互作用体现得更加明显。与理论结果相比,无侧限埋深基础的平动和转动基础阻抗值和理论值吻合较好。由于基础侧边回填土剪切模量小于基础底部土体剪切模量,所以同理论值相比试验得到的基础侧限埋深对基础阻抗影响系数相对较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号