首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sediment transport and morphodynamics of the Douro River estuary   总被引:1,自引:1,他引:0  
A combination of dredging data, hydrographic surveys and numerical modelling has been used to assess morphological change and sediment transport in the Douro River estuary. The system is dominated by sand- and gravel-sized sediments and confined by resistant rock types. The evolution of the bed in the last 20 years has been strongly influenced by the opening of a navigation channel. According to the data available to date, the average maintenance dredging volume has been of the order of 0.4 × 106 m3 year−1. Comparisons of hydrographic surveys reveal a rate of volume loss of the same magnitude. Apparently, maintenance dredging mainly involves local material, transported into the channel from shallower areas of the estuary. The results of numerical modelling indicate that the sediment transport capacity due to tidal currents is very limited. River flood events increase the transport capacity by several orders of magnitude, thus playing a critical role in sediment redistribution and supply to the coast. The average sediment transport capacity is estimated to be of the order of 0.1 × 106 m3 year−1 in most of the estuary and 0.5 × 106 m3 year−1 at the inlet, with a large uncertainty. It is concluded that, if morphological stability is set as an environmental objective, the dredged material should not be removed from the system but rather be used to nourish the estuarine beaches and the barrier spit.  相似文献   

3.
The paper examines the dependency between total sediment transport, q, and grain size, D (i.e. q  Dp) under dam break generated swash flows. Experiments were performed in a dam break flume over a sloping mobile sand bed with median grain sizes ranging from 0.22 mm to 2.65 mm. The total sediment transport was measured by truncating the flume bed and collecting the sediment transported over the edge. The experiments were designed to exclude pre-generated turbulence and pre-suspended sediment so as to focus solely on the swash flow. The magnitude and nature of the grain size dependency (i.e. p value) were inferred for different flow parameters; the initial dam depth, do, the integrated depth averaged velocity cubed, ∫ u3dt, and against the predicted transport potential, qp, using the Meyer-Peter Muller (MPM) transport model and variations of that model. The data show that negative dependencies (p < 0) are obtained for do and qp, whilst positive dependencies (p > 0) are obtained for ∫ u3dt. This indicates that a given do and qp transport less sediment as grain size increases, whereas transport increases with grain size for a given ∫ u3dt. The p value is found to be narrowly ranged, 0.5  p   0.5. On average, the incorporation of a pressure gradient term via the piezometric head into the MPM formulation reduces qp by 4% (fine sand) to 18% (coarse sand). The measured total transport for fine and coarse sands is best predicted using MPM and MPM + dp*/dx respectively. However, the inferred optimum transport coefficient in the MPM formulation is about 30, much higher than the standard coefficient in a steady flow and this is not due to the presence of the pre-suspended sediment. The optimum transport coefficient indicates some sensitivity to grain size, suggesting that some transport processes remain unaccounted for in the model.  相似文献   

4.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

5.
《Coastal Engineering》2005,52(1):1-23
We develop solutions for the transport of suspended sediment by a single swash event following the collapse of a bore on a plane beach, and we investigate the morphodynamical role that such transport may play. Although the intrinsic asymmetry between uprush and backwash velocities tends to encourage the export of sediment, we find that swash events may be effective in distributing across the swash zone much or all of the sediment mobilised by bore collapse; additionally, settling lag effects may promote a weak onshore movement of sediment. We quantify both effects in terms of the properties of the sediment and of the swash event, and comment on the relationship between our findings and recent field studies of swash zone sediment transport.  相似文献   

6.
New multibeam echosounder and processing technologies yield sub-meter-scale bathymetric resolution, revealing striking details of bedform morphology that are shaped by complex boundary-layer flow dynamics at a range of spatial and temporal scales. An inertially aided post processed kinematic (IAPPK) technique generates a smoothed best estimate trajectory (SBET) solution to tie the vessel motion-related effects of each sounding directly to the ellipsoid, significantly reducing artifacts commonly found in multibeam data, increasing point density, and sharpening seafloor features. The new technique was applied to a large bedform field in 20–30 m water depths in central San Francisco Bay, California (USA), revealing bedforms that suggest boundary-layer flow deflection by the crests where 12-m-wavelength, 0.2-m-amplitude bedforms are superimposed on 60-m-wavelength, 1-m-amplitude bedforms, with crests that often were strongly oblique (approaching 90°) to the larger features on the lee side, and near-parallel on the stoss side. During one survey in April 2008, superimposed bedform crests were continuous between the crests of the larger features, indicating that flow detachment in the lee of the larger bedforms is not always a dominant process. Assessment of bedform crest peakedness, asymmetry, and small-scale bedform evolution between surveys indicates the impact of different flow regimes on the entire bedform field. This paper presents unique fine-scale imagery of compound and superimposed bedforms, which is used to (1) assess the physical forcing and evolution of a bedform field in San Francisco Bay, and (2) in conjunction with numerical modeling, gain a better fundamental understanding of boundary-layer flow dynamics that result in the observed superimposed bedform orientation.  相似文献   

7.
8.
New large-scale laboratory data are presented on the influence of long waves, bichromatic wave groups and random waves on sediment transport in the surf and swash zones. Physical model testing was performed in the large-scale CIEM wave flume at UPC, Barcelona, as part of the SUSCO (swash zone response under grouping storm conditions) experiment in the Hydralab III program (Vicinanza et al., 2010). Fourteen different wave conditions were used, encompassing monochromatic waves, bichromatic wave groups and random waves. The experiments were designed specifically to compare variations in beach profile evolution between monochromatic waves and unsteady waves with the same mean energy flux. Each test commenced with approximately the same initial profile. The monochromatic conditions were perturbed with free long waves, and then subsequently substituted with bichromatic wave groups with different bandwidth and with random waves with varying groupiness. Beach profile measurements were made at half-hourly and hourly intervals, from which net cross-shore transport rates were calculated for the different wave conditions. Pairs of experiments with slightly different bandwidth or wave grouping show very similar net cross-shore sediment transport patterns, giving high confidence to the data set. Consistent with recent small-scale experiments, the data clearly show that in comparison to monochromatic conditions the bichromatic wave groups reduce onshore transport during accretive conditions and increase offshore transport during erosive conditions. The random waves have a similar influence to the bichromatic wave groups, promoting offshore transport, in comparison to the monochromatic conditions. The data also indicate that the free long waves promote onshore transport, but the conclusions are more tentative as a result of a few errors in the test schedule and modifications to the setup which reduced testing time. The experiments suggest that the inclusion of long wave and wave group sediment transport is important for improved near-shore morphological modeling of cross-shore beach profile evolution, and they provide a very comprehensive and controlled series of tests for evaluating numerical models. It is suggested that the large change in the beach response between monochromatic conditions and wave group conditions is a result of the increased significant and maximum wave heights in the wave groups, as much as the presence of the forced and free long waves induced by the groupiness. The equilibrium state model concept can provide a heuristic explanation of the influence of the wave groups on the bulk beach profile response if their effective relative fall velocity is larger than that of monochromatic waves with the same incident energy flux.  相似文献   

9.
The Barra Nova inlet, in south Portugal, is known to migrate progressively southeastwards under wave action. The morphodynamics of this system during a representative year suggests that this long-term evolution is dependent on a seasonal behavior of the tidal inlet which can be described through a three-stage model of post-storm, transition and extended fair-weather conditions. Processes involved in this evolution indicate that the historical migration of the Barra Nova is not dependent on the longshore drift forcing constricting the channel on the updrift coast, but rather on the adjustment of the system to a major erosion of the downdrift coast during short storm events.  相似文献   

10.
The Barra Nova inlet, in south Portugal, is known to migrate progressively southeastwards under wave action. The morphodynamics of this system during a representative year suggests that this long-term evolution is dependent on a seasonal behavior of the tidal inlet which can be described through a three-stage model of post-storm, transition and extended fair-weather conditions. Processes involved in this evolution indicate that the historical migration of the Barra Nova is not dependent on the longshore drift forcing constricting the channel on the updrift coast, but rather on the adjustment of the system to a major erosion of the downdrift coast during short storm events.  相似文献   

11.
12.
C. D. Storlazzi  M. E. Field   《Marine Geology》2000,170(3-4):289-316
Field measurements of beach morphology and sedimentology were made along the Monterey Peninsula and Carmel Bay, California, in the spring and summer of 1997. These data were combined with low-altitude aerial imagery, high-resolution bathymetry, and local geology to understand how coastal geomorphology, lithology, and tectonics influence the distribution and transport of littoral sediment in the nearshore and inner shelf along a rocky shoreline over the course of decades. Three primary modes of sediment distribution in the nearshore and on the inner shelf off the Monterey Peninsula and in Carmel Bay were observed. Along stretches of the study area that were exposed to the dominant wave direction, sediment has accumulated in shore-normal bathymetric lows interpreted to be paleo-stream channels. Where the coastline is oriented parallel to the dominant wave direction and streams channels trend perpendicular to the coast, sediment-filled paleo-stream channels occur in the nearshore as well, but here they are connected to one another by shore-parallel ribbons of sediment at depths between 2 and 6 m. Where the coastline is oriented parallel to the dominant wave direction and onshore stream channels are not present, only shore-parallel patches of sediment at depths greater than 15 m are present. We interpret the distribution and interaction or transport of littoral sediment between pocket beaches along this coastline to be primarily controlled by the northwest-trending structure of the region and the dominant oceanographic regime. Because of the structural barriers to littoral transport, peaks in wave energy appear to be the dominant factor controlling the timing and magnitude of sediment transport between pocket beaches, more so than along long linear coasts. Accordingly, the magnitude and timing of sediment transport is dictated by the episodic nature of storm activity.  相似文献   

13.
The error source analysis of oil spill transport modeling: a case study   总被引:2,自引:2,他引:0  
Numerical modeling is an important tool to study and predict the transport of oil spills. However, the accu- racy of numerical models is not always good enough to provide reliable information for oil spill transport. It is necessary to analyze and identify major error sources for the models. A case study was conducted to analyze error sources of a three-dimensional oil spill model that was used operationally for oil spill forecast- ing in the National Marine Environmental Forecasting Center (NMEFC), the State Oceanic Administration, China. On June 4, 2011, oil from sea bed spilled into seawater in Penglai 19-3 region, the largest offshore oil field of China, and polluted an area of thousands of square kilometers in the Bohai Sea. Satellite remote sensing images were collected to locate oil slicks. By performing a series of model sensitivity experiments with different wind and current forcings and comparing the model results with the satellite images, it was identified that the major errors of the long-term simulation for oil spill transport were from the wind fields, and the wind-induced surface currents. An inverse model was developed to estimate the temporal variabil- ity of emission intensity at the oil spill source, which revealed the importance of the accuracy in oil spill source emission time function.  相似文献   

14.
Estimation of loads derived from shipping water events in naval and offshore structures is of importance to improve their structural design or to predict changes in their dynamics. For the case of vertical loads on deck of a fixed structure, it is possible to estimate analytically their evolution in time by considering the distribution of shipping water elevations. However, the classical approach to estimate this distribution (i.e., dam-break method) tends to overestimate the amount of water on deck and does not follow the generated decay trends observed experimentally. In the present work, the time evolution of the vertical loads due to shipping water events was studied analytically and experimentally. The validation of the use of a convolution model to estimate the time evolution of vertical loads is presented, aiming to improve the results obtained with classical approaches. A systematic experimental study has been conducted using the wet dam-break method to generate isolated shipping water events, measuring the slow-varying vertical loads on a rectangular fixed structure. A force balance and a high-speed camera have been used at the same sampling rate to monitor the vertical loads and the shipping water evolution on the deck. Results demonstrated that the use of the convolution model improved the representation of the time series of loads compared with the traditional dam-break approach. With this new method, it was possible to capture the peaks and the decay tendencies observed in the experimental data in an approximated way.  相似文献   

15.
Sediment-laden sea ice is widespread over the shallow, wide Siberian Arctic shelves, with off-shelf export from the Laptev and East Siberian Seas contributing substantially to the Arctic Ocean's sediment budget. By contrast, the North American shelves, owing to their narrow width and greater water depths, have not been deemed as important for basin-wide sediment transport by sea ice. Observations over the Chukchi and Beaufort shelves in 2001/02 revealed the widespread occurrence of sediment-laden ice over an area of more than 100,000 km2 between 68 and 74°N and 155 and 170°W. Ice stratigraphic studies indicate that sediment inclusions were associated with entrainment of frazil ice into deformed, multiple layers of rafted nilas, indicative of a flaw-lead environment adjacent to the landfast ice of the Chukchi and Beaufort Seas. This is corroborated by buoy trajectories and satellite imagery indicating entrainment in a coastal polynya in the eastern Chukchi Sea in February of 2002 as well as formation of sediment-laden ice along the Beaufort Sea coast as far eastward as the Mackenzie shelf. Moored upward-looking sonar on the Mackenzie shelf provides further insight into the ice growth and deformation regime governing sediment entrainment. Analysis of Radarsat Synthetic Aperture (SAR) imagery in conjunction with bathymetric data help constrain the water depth of sediment resuspension and subsequent ice entrainment (>20 m for the Chukchi Sea). Sediment loads averaged at 128 t km–2, with sediment occurring in layers of roughly 0.5 m thickness, mostly in the lower ice layers. The total amount of sediment transported by sea ice (mostly out of the narrow zone between the landfast ice edge and waters too deep for resuspension and entrainment) is at minimum 4×106 t in the sampling area and is estimated at 5–8×106 t over the entire Chukchi and Beaufort shelves in 2001/02, representing a significant term in the sediment budget of the western Arctic Ocean. Recent changes in the Chukchi and Beaufort Sea ice regimes (reduced summer minimum ice extent, ice thinning, reduction in multi-year ice extent, altered drift paths and mid-winter landfast ice break-out events) have likely resulted in an increase of sediment-laden ice in the area. Apart from contributing substantially to along- and across-shelf particulate flow, an increase in the amount of dirty ice significantly impacts (sub-)ice algal production and may enhance the dispersal of pollutants.  相似文献   

16.
On the basis of the approximate analytical solution for the nonlinear shallow water equations of Antuono and Brocchini [M. Antuono & M. Brocchini, The boundary value problem for the nonlinear shallow water equation, Stud. Appl. Maths, 119, 71–91 (2007).], we propose useful regression curves for the prediction of maximum run-up and dynamical forces in the swash zone on a frictionless, uniformly sloping beach. For the first time the dependence of the results on both the wave height and the wave steepness is analyzed in detail providing formulae able to describe a wide class of wave inputs. Finally, the regression formulae are validated through comparison with maximum run-up laws and breaking conditions already available in the literature, the present model results appearing to better account for nonlinear effects.  相似文献   

17.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

18.
19.
Sediment (silt) transport on a wave-dominated estuarine intertidal flat dissected by a tidal creek that connects to the watershed freshwater network is investigated by analysing field data from Waikopua, New Zealand, and by applying simple models. The intention is to expand understanding beyond the case of the idealised, two-dimensional wave-dominated flat. During fairweather (no waves), there is a continuous exchange of silt between the bed of the tidal creek and the upper flat, and that exchange is controlled by the elevation of the flat with respect to the creek bed. Rainfall in the watershed does not fundamentally alter the way the intertidal flat and the creek interact, but it does increase silt loads in the creek, which in turn increases the amount of silt exchanged with the upper flat. Waves on the flat are fetch-limited, and frictional dissipation causes waves to reduce in height at the edge of the water body. Under some circumstances, a frictional-dissipation zone may occupy the entire middle-plus-upper flat. There is a maximum in wave-orbital speed at the bed (Usigb) in the middle reaches of the flat, which arises from the particular balance between down-fetch wave growth, wave dissipation by bottom friction, and attenuation through the water column of wave-orbital motions under the short-period waves. There is a progressive decoupling of suspended-silt concentration (SSC) from Usigb moving from the bottom to the top of the flat, such that SSC is highest towards the top of the flat, where Usigb is virtually zero. We suggest that this is due to wave activity retarding the settling of suspended silt, and explore that idea with a simple model that is capable of reproducing the essential features of the data set. The results are assimilated in a conceptual model of the system, which shows the balances that control net silt transport in the creek and on the different parts of the flat, three different silt sources, and the role of waves and rainfall. The conceptual model also points at the feedbacks between sediment-transport processes and morphology that are inherent in the system. Implications of those feedbacks to long-term morphodynamics are essentially unexplored.  相似文献   

20.
Cape Rodney is a large headland that protrudes 3–4 km into deep water in the Hauraki Gulf and separates the Mangawhai‐Pakiri and Omaha littoral cells. Detailed swath mapping of seabed sediments around Cape Rodney was carried out using by side‐scan sonar and ground‐truthed by SCUBA, grab sampling, and video. Despite the barrier imposed by the headland two pathways of sand transport around the headland, separated by the topographic high of Leigh Reef, have been identified. One lies close to the headland, where sand from the beach and nearshore of the Mangawhai‐Pakiri embayment is driven by waves and currents along a 500‐m‐wide pathway in c. 20–25 m depth around the headland to the vicinity of Leigh Harbour. The other lies in 50 m water‐depth seawards of Leigh Reef. Here fine sand, sourced from the nearshore of the Mangawhai‐Pakiri embayment and driven offshore from the tip of the headland, is transported back and forth by tidal currents in 50 m water depth on the floor of the Jellicoe Channel. The sand bodies along both these pathways are thin and so sand leakage from the Mangawhai‐Pakiri embayment is thought to be small. Transport at these depths is dependent on both tide and wave generated currents and episodic occurring during storm events. The sediment facies associated with little sand transport about a headland in deep water is one of thin and discontinuous and patchy sand cover between rocky areas and over coarser megarippled substrate. Ocean swell, tidally driven phase eddies that spin up on both sides of the headland, and bathymetry all play a role in shaping those facies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号