首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of shaking table model tests which were carried out to investigate the pore water pressure generation and related liquefaction mechanism in layered sand deposits. The experiments were performed on uniform sand columns, silt interlayered sand columns and two layered sand columns deposited at various relative densities and subjected to different input excitations. During the experiments excess pore water pressures were measured by pore pressure transducers installed at three different depths and, surface settlements and thickness of water film developed under less permeable inclusions were measured by a digital camera. The experimental results are discussed and compared to demonstrate the effects of relative density, input acceleration and presence of a silt seam on the generation of excess pore water pressure in sand deposits subjected to dynamic loading. The results showed that the presence of a less permeable silt interlayer within the sand deposit and existence of a loose sand layer underlying dense sand deposits can have significant effect on the pore water pressure generation mechanism.  相似文献   

2.
This paper presents the results of dynamic centrifuge model tests conducted to investigate the liquefaction mechanism in non-homogeneous soil deposits. Four types of model tests were conducted: one model test involved a uniform soil deposit; one involved continuous layered soil deposit; and two involved discontinuous layered soil deposits. Non-homogeneity in the tests was incorporated by including periodically distributed discontinuous silty sand patches. It was found that more excess pore water pressure (EPWP) remains for a longer period of time in the discontinuous region in non-homogeneous soil deposits compared with the continuous layered and uniform soil deposits. The generation of pore water pressure ceases the supply of a new mass of water after seismic excitation; therefore the dissipation of EPWP becomes the dominant factor for settlement after seismic excitation. The rapid dissipation of EPWP through the discontinuous part in the non-homogeneous soil deposits manifests as a larger settlement in the discontinuous part, causing non-uniform settlements.  相似文献   

3.
主震结束后,余震引起的再液化会对土工结构物带来进一步的严重灾害。以人工岛为研究对象,基于FE-FD耦合有限元方法,考虑有无余震、不同余震大小和主余震不同时间间隔因素,探讨对人工岛再液化灾害的影响规律。研究结果表明:主震结束后,随着超孔隙水压力的消散,人工岛砂土层液化区域逐渐减小,余震发生时液化区域又开始扩展,甚至可能大于主震结束时的液化区域面积,且其灾害程度比无余震发生时的要大得多;随着主、余震的时间间隔增加,间隔期的土层固结排水很大程度地提高人工岛的抗再液化能力,当超孔隙水压力消散完后,在相同余震等级情况下很难再次达到完全液化;随着余震峰值加速度的增加,人工岛的沉降量和水平侧移量都随之增加,再次液化时间点会向前提前数秒,主震结束后,随着土层的固结排水,人工岛的沉降会继续增加,甚至超过主震引起的沉降量,而水平侧移的产生主要发生在地震液化过程中,在后续的固结排水中几乎不变;余震发生前,如果人工岛的砂土土层仍处于液化状态,则液化层可能会起到隔震作用,减轻余震对岛体造成的灾害。  相似文献   

4.
To understand the post-liquefaction behavior of liquefied ground, it is important to get a better understanding and a more suitable characterization of the variation of excess pore pressure after liquefaction. In this paper, the soil permeability is considered as one of the key soil parameters for clarifying the mechanism of post-liquefaction behavior of liquefied ground. For this reason, a series of shaking table tests were conducted for a Toyoura sand deposit with different soil permeability values. Polymer fluid was used in model tests to vary the permeability of sand deposits. Excess pore pressures and settlements were measured in each test. A basic mechanism in post-liquefaction behavior and the solidification phenomenon after liquefaction were discussed based on these test results. Also, a new method for predicting the dissipation of excess pore pressure was developed. This study provides evidence of the important effect of soil permeability on the velocity with which the solidification front moves upward in liquefied ground. It is suggested that the value of coefficient of permeability of liquefied sand can increase to about 4.0 times the initial value. This variation of permeability after liquefaction should be taken into account in post-liquefaction analysis.  相似文献   

5.

The seismic behaviour of a building on a liquefiable deposit is a complex interaction which involves quantifying both shaking induced damage and permanent ground deformation-related damage. In this paper the key parameters that influence both surface shaking and foundation settlements have been identified as the depth, thickness and liquefaction resistance of an equivalent liquefiable layer. These parameters can be used to develop an ‘equivalent soil profile’ that is analogous to the equivalent single degree-of-freedom that reduces the complexity of the dynamic response of a building into comparable and easily understood quantities. The equivalent soil profile is quantified independent of the seismic hazard, making it compatible with performance based design and assessment frameworks such that the building and soil profile can be directly assessed at different levels of seismic hazard. Several numerical studies are presented that demonstrate the influence of these key parameters on the ground surface shaking and foundation settlement. A set of criteria are proposed for classifying soil profiles into 22 different soil classes for regional loss assessment. An algorithm was developed for automatically fitting the equivalent soil profile to a cone penetration test trace and issues with the fitting are discussed. Field reconnaissance was undertaken to collect additional data to support existing datasets on the performance of buildings in Adapazari, during the 1999 Kocaeli, Turkey, earthquake (Mw = 7.4). The field case history data was used to investigate the correlation between the depth, thickness and liquefaction resistance of an equivalent liquefiable layer, on the extent of foundation permanent deformation. The case history data showed that in general a shallow, thick and weak liquefiable layer near the surface results in significant settlement but a lack of data for buildings on non-liquefiable deposits and the additional complexities involved with real buildings and soil deposits, meant that the trends observed in the idealised numerical models could not identified in the field case history data set.

  相似文献   

6.
The present work deals with 1D and 2D ground response analysis and liquefaction analysis of alluvial soil deposits from Kanpur region along Indo-Gangetic plains. Standard penetration tests and seismic down hole tests have been conducted at four locations namely IITK, Nankari village, Mandhana and Bithoor at 1.5 m interval up to a depth of 30 m below the ground surface to find the variation of penetration blows and the shear wave velocity along the depth. From the selected sites undisturbed as well as representative soil samples have been collected for detailed soil classification. The soil profiles from four sites have been considered for 1D and 2D ground response analysis by applying the free field motions of three Himalayan earthquakes namely Chamba earthquake (Mw—5.1), Chamoli earthquake (Mw—6.4) and Uttarkashi earthquake (Mw—6.5). An average value of Peak Ground Acceleration (PGA) obtained from 1D and 2D analysis is considered for liquefaction analysis and post-liquefaction settlement. The excess pore water pressure ratio is greater than 0.8 at a depth of 24 m from ground surface for IITK, Nankari village, Bithoor sites. More than 50% of post liquefaction settlement is contributed by layers from 21–30 m for all sites. In general, the soil deposits in Kanpur region have silty sand and sand deposits and are prone to liquefaction hazards due to drastic decrease of cyclic resistance ratio (CRR) at four chosen sites in Kanpur.  相似文献   

7.
将废弃橡胶轮胎内填充散体材料形成加筋土结构,已被应用于地基、挡土墙和边坡加固等工程,表现出较好的减震隔振效果,而轮胎加筋土的抗液化性能尚缺乏研究。开展3组小型振动台试验,通过改变轮胎垫层的排水条件,验证轮胎加筋砂垫层的抗液化效果。结果表明:轮胎加筋砂垫层具有良好的抗液化效果,与刚性垫层相比,超静孔压比峰值差值范围在0.01~0.19,残余超静孔压比差值范围在0.08~0.16,轮胎加筋砂垫层提供的排水通道具有抑制超静孔隙水压力发展和加速超静孔隙水消散的作用,孔隙水会沿着轮胎与下部土体的界面以及胎间的排水通道排出;采用量测侧向动土压力的方法,定义土体液化程度量化指标,进一步验证轮胎加筋砂垫层抗液化效果;振动过程中轮胎加筋垫层表面沉降范围为11.3~15.7 mm,表现出较好的变形协调性能。  相似文献   

8.
Boundary effects of a laminar container in centrifuge shaking table tests   总被引:2,自引:0,他引:2  
Two dynamic centrifuge model tests were performed to simulate dry or saturated sand deposits subjected to 1 Hz base shaking. This experimental study investigated the boundary effects of a laminar container on the seismic response acquired from accelerometers and from pore pressure transducers, both of which were embedded in the sand bed at various depths and distances from the end walls. Under the tested configurations and the employed input motion used in the study, the test results revealed minimal boundary effects on the seismic responses. The measured maximum amplitude, main frequencies, phase lags of acceleration, and the profiles of the calculated RMS acceleration amplification factor were not affected by the boundaries if the instruments were positioned at a distance of more than one-twentieth of the model length from the end walls and were not positioned on the ground surface. No obvious discrepancies were observed in the time histories of excess pore water pressure, measured at a distance of one-fourth of the model length from the end walls. These results infer that variations in the seismic response at the end walls were minimal; hence the laminar container used in the study may be used effectively to simulate 1D shear wave propagation in centrifuge shaking table tests. However, for other testing configurations, a similar study should be undertaken for evaluating the boundary effect of the laminar container on the seismic responses.  相似文献   

9.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

10.
The seismic risk is fairly high in Hong Kong even though it is located in an intreplate area with low to moderate seismicity. This is because of its high seismic vulnerability due to the presence of many steep loose fill slopes with a marginal static factor of safety, and a high consequence ‘value’ as a result of the dense population and intense economic activity in Hong Kong. In order to investigate the seismic stability and potential flow liquefaction of loose fill slopes, dynamic centrifuge tests in uni-axial and bi-axial directions were performed on saturated model embankments made of loose completely decomposed granite (CDG). Three windowed sinusoidal waves with peak shaking amplitudes ranging from 0.08 g to 0.3 g (prototype scale) were adopted. During the strong uni-axial shaking of 0.3 g, the measured maximum excess pore pressure ratios ranged from 0.70 to 0.85 and a relatively small crest settlement of 5.8 mm (0.22 m prototype) was measured. No soil liquefaction or flow slides were observed. Comparing the results between the strong uni-axial and bi-axial shaking, the maximum pore pressure ratios measured from the bi-axial test varied from 0.75 to 0.87, which were marginally larger than those obtained from the uni-axial test. Although the measured crest settlement during the bi-axial shaking was about 27% larger than that of the uni-axial test, soil liquefaction and flow slide did not occur. These test results suggest that loose CDG fill slopes are likely to be stable under the proposed design PGA ranging from 0.08 to 0.11 g in Hong Kong.  相似文献   

11.
应用FLAOD实现自由场液化数值模拟试验.试验结果验证了砂土液化典型特征:超静孔隙水压升高,有效应力降低,体积压缩积累增大.证实了液化的隔振作用:砂土在液化状态变为流体,不能传递剪力,液化时砂土位移、速度、加速度振幅显著降低,剪应力降低,动水向上渗流,土体向下沉降,水平残留不可恢复位移.球压应力、有效压应力、动水压力满...  相似文献   

12.
Shaking table tests were conducted on saturated clean Vietnam sand in the large biaxial laminar shear box (1880 mm×1880 mm×1520 mm) at the National Center for Research on Earthquake Engineering (NCREE), Taiwan. The settlement of sand specimens was measured and evaluated during and after each shaking test. Without liquefaction, the settlement of sand caused by shaking is very small. Significant volume changes occur only when there is liquefaction of sand. The volumetric strain of liquefied sand was calculated according to the measured settlement and the thickness of liquefied sand in the specimen. Relations between volumetric strain after liquefaction and the relative density of saturated clean sand were developed for various shaking durations and earthquake magnitudes. They are not affected by the shaking amplitude, frequency, and direction (one- or multidirectional shaking).  相似文献   

13.
To predict the earthquake response of saturated porous media it is essential to correctly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after earthquake shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element framework that has been developed and utilized for this purpose. The framework employs fully coupled dynamic field equations with a upU formulation for simulation of pore fluid and solid skeleton interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed verification and validation of the formulation and implementation of the developed numerical tool, it is employed in the seismic response of saturated porous media. The study includes examination of the mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in uniform and layered profiles of saturated sand deposits.  相似文献   

14.
通过对2001年昆仑山口西8.1级地震区冻土震害考察研究表明,震区主要存在冰碛、冲积、洪积和湖积等成因的冻土,沿地震破裂带冻土厚度变化较大。震区冻土变形破坏主要包括地震构造成因的地震破裂带和由地震振动引起的裂缝、液化、震陷和崩塌等。冻土中地震破裂带在地表主要以脆性变形为主,在地震断裂左旋走滑运动作用下,主要由剪切裂缝、张裂缝和开裂的挤压鼓包等组成。裂缝、液化、震陷和崩塌等变形破坏的展布特征及其组合形式与震区岩土与环境条件密切相关;本次地震震害具有地震破裂带规模大、有建筑物分布的青藏公路一线地震烈度衰减较快和震害分布受岩土条件影响大等特点。  相似文献   

15.
Two in-flight shear wave velocity measurement systems were developed to perform the subsurface exploration of shear wave velocity in a centrifuge model. The bender elements test and the pre-shaking test used in the study provided reliable and consistent shear wave velocity profiles along the model depth before and after shaking in the centrifuge shaking table tests. In addition, the use of the bender elements measurement system particularly developed here allowed continuous examination of the evolution of shear wave velocity not only during and after the shaking periods in the small shaking events but also during the dissipation period of excess pore water pressure after liquefaction in the large shaking events. The test results showed that the shear wave velocity at different values of excess pore water pressure ratio varied as the effective mean stress to the power of 0.27, to a first approximation. Consequently, a relationship between the shear wave velocity evolution ratio and the excess pore water pressure ratio is proposed to evaluate the changes in shear wave velocity due to excess pore water generation and dissipation during shaking events. This relation will assist engineers in determining the shear stiffness reduction ratio at various ru levels when a sand deposit is subjected to different levels of earthquake shaking.  相似文献   

16.
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.  相似文献   

17.
The evaluation of seismic pile response is particularly useful for geotechnical engineers involved in the design of foundations in liquefying site. Shake table testing was performed to study the dynamic interactive behavior of soil–pile foundations in liquefying ground under different shaking frequency and amplitude. The soil profile consisted of a clayey layer over liquefiable sand over clay. The model was tested with a series of El Centro earthquake motions with peak accelerations ranging from 0.15g to 0.50g, and time step from 0.006 to 0.02 s. Representative data, including time histories of accelerations and excess pore pressure ratios that characterize the important aspects of soil–pile interaction in liquefying ground are presented. The shaking frequency has no significant effect on the magnitudes of excess pore pressure ratio, ground and pile accelerations and pile bending moments. Excess pore pressure ratio, ground acceleration and pile acceleration, and pile bending moment largely depend on the shaking amplitude.  相似文献   

18.
Earthquake-induced excess pore pressure build-up and the associated shear strength degradation of liquefiable soils may result in bearing capacity degradation and seismic settlement accumulation of shallow foundations, two detrimental effects which need to be taken into account in order to ensure a viable performance-based design. This paper focuses on the first effect, in the case of strip and rectangle footings, resting on a deep liquefiable soil layer overlaid by a thinner non-liquefiable clay crust. A simplified analytical methodology is presented, based on the Meyerhof and Hanna [14] composite failure mechanism and the use of a reduced friction angle for the liquefied sand. The methodology is verified and evaluated against parametric numerical analyses with the Finite Difference Method, applying an advanced bounding surface constitutive model to account for the liquefied sand response. In addition, the existence of a critical clay crust thickness is explored, beyond which subsoil liquefaction does not affect the bearing capacity of the foundation.  相似文献   

19.
遮帘式板桩码头作为一种新型的板桩结构型式,其抗震性能研究是设计建造过程中的重要环节。在FEM-FDM水土耦合计算的平台上引入循环弹塑性本构模型,借助FORTRAN编程软件形成饱和砂土动力液化分析的数值方法,可有效模拟饱和砂土在地震动力作用下的非线性及大变形特性,同时也可模拟砂土液化流动对遮帘桩和前墙的动土压力。研究表明:地震作用下可液化土层超孔隙水压力比增长并发生较大的水平流动变形,对前墙的水平破坏大于竖向破坏;前墙剪力最大值位于海床与前墙交界处;遮帘桩剪力最大值位移与前墙底平行的位置;后拉杆拉力逐渐变大,前拉杆拉力逐渐变小。通过对板桩码头地震液化灾害的分析,可为抗震和抗液化设计提供参考依据。  相似文献   

20.
黄土具有极强的水敏性和动力易损性,黄土地区多次强震都引起过液化、滑坡等地质灾害,造成了严重的人员伤亡和财产损失,因此振动作用下高含水率黄土的液化问题不容忽视。在大量已有研究的基础上,以宁夏党家岔滑坡为例,研究振动作用下高含水率黄土的液化问题。现场调查发现高含水率滑带土并未达到完全饱和状态(饱和度达95%左右),在新鲜的芯样断面发现有明显的"流态化"液化破坏特征。借助室内试验和数值模拟技术,对党家岔滑坡非饱和黄土层的液化性能及液化发生机理进行分析。结果表明:(1)非饱和黄土层液化发生机理可概括为:地震作用下饱和黄土层孔隙水压力激增,高含水率非饱和黄土层孔压增长响应滞后,随着孔隙水压朝上部消散,地下水向上渗流,当平均有效应力接近0时,高含水率非饱和黄土层发生液化;(2)振动过程中不同饱和度黄土孔隙水压力增长响应具有滞后性,借鉴饱和黄土液化时孔压比的判别标准和Seed简化判别法,初步证实党家岔滑坡高含水率非饱和黄土层可发生振动液化,斜坡前缘和中部土体发生液化的初始饱和度范围分别为68.3%~100%和73.8%~100%,斜坡后缘土体不发生液化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号