首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The geothermal use of concrete geostructures (piles, walls and slabs) is an environmentally friendly way of cooling and heating buildings. With such geothermal structures, it is possible to transfer energy from the ground to fluid‐filled pipes cast in concrete and then to building environments. To improve the knowledge in the field of geothermal structures, the behaviour of a pile subjected to thermo‐mechanical loads is studied in situ. The aim is to study the increased loads on pile due to thermal effects. The maximum thermal increment applied to the pile is on the order of 21°C and the mechanical load reached 1300 kN. Coupled multi‐physical finite element modelling is carried out to simulate the observed experimental results. It is shown that the numerical model is able to reproduce the most significant thermo‐mechanical effects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Energy geostructures are rapidly gaining acceptance around the world; they represent a renewable and clean source of energy that can be used for the heating and cooling of buildings and for de‐icing of infrastructures. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. The geothermal energy exploitation represents an additional thermal loading, seasonally cyclic, which is imposed on the soil and the structure itself. Because the primary role of the piles is the stability of the superstructure, this aspect needs to be ensured even in the presence of the additional thermal load. The goal of this paper is to numerically investigate the behaviour of energy pile foundations during heating–cooling cycles. For this purpose, the finite element method is used to simulate both a single and a group of energy piles. The piles are subjected to a constant mechanical load and a seasonally cyclic thermal load over several years, imposed in terms of injected–extracted thermal power. The soil and the pile–soil interface behaviours are reproduced using a thermoelastic‐thermoplastic constitutive model. The thermal‐induced stresses inside the piles and the additional displacements of the foundations are discussed. The group model is used to investigate the interactions between the piles during thermo‐mechanical loading. The presented results are specific to the studied cases but lead to the conclusion that both the thermal‐induced displacements and stresses, despite being acceptable under normal working conditions, deserve to be taken into account in the geotechnical design of energy piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Integrating ground heat exchanger elements into concrete piles is now considered as an efficient energy solution for heating/cooling of buildings. In addition to the static load of buildings, the concrete piles also undergo a cycle of thermal deformation. In the case of single energy pile, calculation methods already exist and permit to perform a proper geotechnical design. In the case of energy pile group, the thermo‐mechanical interactions within the group are more complex. Very few experimental results on the energy pile group are available so that numerical analysis can be an interesting way to provide complementary results about their behavior. This paper deals with a numerical analysis including a comparison between a single energy pile and an energy pile group with different boundary conditions at the pile head. In order to take into account the stress reversal induced by the thermal expansions and contractions, a cyclic elastoplastic constitutive model is introduced at the soil–pile interface. The analysis aims to give some insights about the long‐term cyclic interaction mechanisms in the energy pile group. Based on this qualitative study, some guidance can be brought for the design of energy piles in the case where group effects should be considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
能源桩是将地埋管换热器置于建筑桩基础中来实现地下换热的一种新型的地源热泵技术。然而,不同季节运行条件下,冷热变化导致的能源桩桩身混凝土的膨胀和收缩会影响能源桩的持续使用甚至危及建筑的安全。因此,寻找到一种温度和轴向应力作用下变形性能较好的桩身混凝土对能源桩技术安全使用和推广至关重要。探讨了桩身素混凝土和掺入不同含 量的钢纤维,聚丙烯纤维桩身加筋混凝土在温度和应力下的变形特性。导热系数测试表明,钢纤维的掺入能提高能源桩桩身混凝土的导热系数,聚丙烯纤维的掺入降低了能源桩桩身混凝土的导热系数。钢纤维掺入量为1.3%时,导热系数最大,为2.44 W/(m·K);热力学梯级加温试验表明,能源桩桩身混凝土掺入钢纤维,聚丙烯纤维均能有效减小应变,钢纤维最大应变减少量为62.43%,聚丙烯纤维最大应变减少量为61.11%;热力学全过程试验表明,钢纤维能有效减少制冷收缩应变,全过程中应变最小。综合对比3种能源桩桩身混凝土热物性参数及温度和应力作用下变形特性可知,钢纤维加筋混凝土更适合作为能源桩桩身材料。  相似文献   

5.
Using pile foundations as heat exchangers with the ground provides an efficient and reliable energy source for the heating and cooling of buildings. However, thermal expansion or contraction of the concrete brings new challenges to the design of such structures. The present study investigates the impact of temperature variation on the mobilised bearing capacities of geothermal piles. The mechanisms driving the variations and redistribution of mobilised bearing forces along geothermal piles are identified using Thermo-Pile software. The EPFL and Lambeth College test piles are modelled and analysed as real-scale experiments. Three simple representative cases are used to investigate the impact of over-sizing geothermal piles on their serviceability. It is found that the mechanisms responsible for the variations and redistribution of mobilised bearing forces along the piles are unlikely to cause geotechnical failure, even if the ultimate bearing force of a pile is reached. Furthermore, over-sizing geothermal piles compared to conventional piles can have a negative impact on their serviceability.  相似文献   

6.
Dai  Quanwei  Zhang  Dongmei  Li  Zili 《Acta Geotechnica》2023,18(1):1-34
Acta Geotechnica - Embedded retaining walls equipped with ground heat exchangers is one kind of energy geostructures, harvesting the shallow ground energy for heating and cooling buildings....  相似文献   

7.
This paper investigates two geothermal energy piles using thermal response tests (TRTs). A set of parameters including pile wall temperature, ground temperature and strain are monitored at four different depths. The thermally induced mechanical behavior of the energy piles are then analyzed based on the monitoring data.The results show the following: (1) The temperature at the pile wall clearly varies throughout the heating and cooling cycle, and the ground temperature distribution shows a delay compared to the TRT stages. (2) The thermally induced mechanical effects are influenced by both the temperature and restraint conditions.  相似文献   

8.
Thermo-mechanical behavior of energy piles in high plasticity clays   总被引:2,自引:2,他引:0  
Energy piles make use of constant and moderate ground temperature for efficient thermal control of buildings. However, this use introduces new engineering challenges because the changes of temperature in the foundation pile and ground induce additional deformations and forces in the foundation element and coupled thermo-hydro-mechanical phenomena in the soil. Several published full-scale tests investigated this aspect of energy piles and showed thermally induced deformation and forces in the foundation element. In parallel, significant progress has been made in the understanding of thermal properties of soils and on the effect of cyclic thermal load on ground and foundation behavior. However, the effect of temperature on the creep rate of energy piles has received practically no attention in the past. This paper reports the experimental results of an in situ tension thermo-mechanical test on an energy pile performed in a very stiff high plasticity clay. During the in situ test, the pile was subjected to thermal loading by circulating hot water in fitted pipes, simulating a thermal load in a cooling-dominated climate, at different levels of mechanical loading. The axial strain and temperature in the pile, and the load–displacement of the pile were monitored during the tension test at different locations along the center of the pile and at the pile head, respectively. The data showed that as the temperature increases, the observed creep rate of the energy pile in this high plasticity clay also increases, which will lead to additional time-dependent displacement of the foundation over the life time of the structure. It was also found that the use of geothermal piles causes practically insignificant thermally induced deformation and loads in the pile itself.  相似文献   

9.
费康  钱健  洪伟  刘汉龙 《岩土力学》2018,39(7):2651-2661
能量桩是将地源热泵系统中的换热管埋置在桩体内部,桩同时起到承载和换热的作用,是一种新型的基础型式。为了合理分析黏土地基中能量桩的力学特性,需要了解能量桩运行过程中桩和地基土的温度响应,并考虑温度变化对土体力学性能的影响。基于有限元软件ABAQUS建立了能量桩传热分析三维有限元模型,把能量桩的传热简化为换热管内液体与管壁之间的对流传热、桩体中的热传导和地基中的热传导,将计算结果与常规理论和实测数据进行了对比验证。对热力耦合边界面本构模型进行了二次开发,通过算例验证了模型对土体压缩和剪切性状温度效应的模拟能力。利用所提出的能量桩传热分析方法和热边界面模型,考虑不同的桩顶工作荷载水平,对正常固结黏土地基中能量桩单桩的长期性能进行了研究,分析了温度循环对桩顶沉降、桩侧摩阻力和桩身轴力的影响。结果表明,工作荷载越高,温度循环次数越多,桩顶累积沉降越大。  相似文献   

10.
循环温度场作用下PCC能量桩热力学特性模型试验研究   总被引:5,自引:0,他引:5  
PCC能量桩是河海大学岩土所开发的一种新型能量桩技术。在常规桩基静载荷模型试验基础上,将PCC能量桩放置在南京典型砂土中,并通过导热管内水体的循环对模型桩体施加温度场,以模拟PCC能量桩在实际运行过程中的承载力特性与受力机制,PCC能量桩先加载至工作荷载(极限荷载的一半),再施加热-冷循环一次,最后加载至极限荷载,测得不同温度下PCC能量桩的荷载-位移关系曲线、桩身应力-应变关系曲线等变化规律。试验结果表明,能量桩换热过程中,热量更容易从桩体传向土体(即夏季模式的热循环);热循环及制冷循环都明显改变了桩顶位移值,且往复循环作用下产生的塑性变形不能完全恢复,其积累变形可能危害上部结构安全;桩身受温度场作用产生的热应力相对较大,且不同约束条件下其变化值有所差异;在制冷循环下,桩底部甚至可能产生较大拉应力。  相似文献   

11.
郭浩然  乔兰  李远 《岩土力学》2018,39(11):4042-4052
桩-土相互作用问题是岩土工程桩基础问题的关键点与难点,目前针对桩身在循环温度荷载与上覆结构荷载双重作用下的能源桩承载特性研究较少。在传统理想弹塑性模型及双曲线模型的基础上,采用分段非线性的方法对桩-土荷载传递骨干曲线进行了修正,并基于Masing’s循环准则,提出了适用于能源桩的桩-土荷载传递模型。利用改进的桩-土荷载传递模型对能源桩承载特性进行数值分析,着重研究了桩-土荷载传递参数比R对能源桩受力情况的影响。此外,为了探究在上覆结构荷载及循环温度荷载双重作用下,能源桩与周围土体之间的真实荷载传递关系及其结构热力学特性,开展了针对能源桩与周围土体之间相互作用问题的室内模型试验,监测了其桩身轴向应力及侧摩阻力随温度及深度变化的趋势,并与基于改进荷载传递模型的数值计算结果进行了对比。室内模型试验监测及数值计算结果显示:能源桩在上覆结构荷载及温度循环荷载双重作用下,其受力行为受改进的桩-土荷载传递循环曲线控制;基于改进的桩-土荷载传递循环曲线而建立的数值模型计算结果与试验结果基本吻合,改进的桩-土荷载传递模型能够较好发地反映能源桩实际的承载特性。  相似文献   

12.
任连伟  孔纲强  郝耀虎  刘汉龙 《岩土力学》2019,40(12):4857-4864
能量桩技术兼具支撑上部荷载和浅层地热能换热器双重功能;作为一种节能减排技术,近年来在国内外获得了一定的发展。然而,目前简单套用基于传统地埋管换热器获得的土体综合热导率系数,无法准确计算能量桩换热效率。依托河南理工大学某低承台3×3能量桩群桩工程应用,开展基于能量桩的土体综合热导率系数测试现场试验和数值模拟研究,分析加热时长、加热功率、流速及桩长等因素对土体综合热导率系数的影响规律,继而探讨能量桩在群桩中的布置形式对土体综合热导率系数的影响规律。研究结果表明,基于传统地源热泵测试所发展起来的土体综合热导率系数线热源分析方法,并不适用于分析基于能量桩现场实测所获得的相关数据;有必要推导一套考虑桩径影响的、适用于能量桩的土体综合热导率系数测试与计算分析方法。  相似文献   

13.
The incorporation of heat exchangers in geostructures changes the temperature of the adjacent soil, raising important issues concerning the effect of temperature variations on hydro-mechanical soil behaviour. The objective of this paper is to improve the understanding and quantification of the impact of temperature variation on the bearing capacity of thermo-active piles. Currently, the design of deep foundations is based on the results of in situ penetrometer or pressuremeter tests. However, there are no published data on the effect of temperature on in situ soil parameters, preventing the specific assessment of the behaviour of thermo-active piles. In this study, an experimental device is developed to perform mini-pressuremeter tests under controlled laboratory conditions. Mini-pressuremeter tests are performed on an illitic soil in a thermo-regulated metre-scale container subjected to temperatures from 1 to 40 °C. The results reveal a slight decrease in the pressuremeter modulus (E p) and a significant decrease in the creep pressure (p f) and limit pressure (p l) with increasing temperature. The results also reveal the reversibility of this effect during a heating–cooling cycle throughout the investigated temperature range, whereas the effect of a cooling–heating cycle was only partially reversible. In the case of several thermal cycles, the effect of the first cycle on the soil parameters is decisive.  相似文献   

14.
This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.  相似文献   

15.
Regnier  G.  Salinas  P.  Jacquemyn  C.  Jackson  M. D. 《Hydrogeology Journal》2022,30(4):1179-1198
Hydrogeology Journal - Aquifer thermal energy storage (ATES) has significant potential to provide largescale seasonal cooling and heating in the built environment, offering a low-carbon alternative...  相似文献   

16.
To accurately predict soil volume changes under thermal cycles is of great importance for analysing the performance of many earth structures such as the energy pile and energy storage system. Most of the existing thermo‐mechanical models focus on soil behaviour under monotonic thermal loading only, and they are not able to capture soil volume changes under thermal cycles. In this study, a constitutive model is proposed to simulate volume changes of saturated soil subjected to cyclic heating and cooling. Two surfaces are defined and used: a bounding surface and a memory surface. The bounding surface and memory surface are mainly controlled by the preconsolidation pressure (a function of plastic volumetric strain) and the maximum stress experienced by the soil, respectively. Under thermal cycles, the distance of the two surfaces and plastic modulus increase with an accumulation of plastic strain. By adopting the double surface concept, a new elastoplastic model is derived from an existing single bounding surface thermo‐mechanical model. Comparisons between model predictions and experimental results reveal that the proposed model is able to capture soil volume changes under thermal cycles well. The plastic strain accumulates under thermal cycles, but at a decreasing rate, until stabilization. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
刘汉龙  王成龙  孔纲强  吴迪 《岩土力学》2016,37(Z1):441-447
能量桩是一种可以节省地下空间和施工埋管费用的新技术,目前针对其在供暖和制冷过程中土体和桩基之间的相互作用机制研究却相对较少。基于模型试验方法,系统地研究了饱和砂土中单U型(绑扎和预埋形式)、W型和螺旋型等4种不同埋管形式情况下的能量桩热力学效应、传热和承载特性,测得桩体和桩周土体温度、桩端阻力、水平土压力、桩顶位移以及桩体应变随时间的变化规律。试验结果表明,在相同输入功率情况下W型埋管形式桩体的温度、土体压力、应力和桩顶位移均较螺旋型和U型埋管形式的情况大。  相似文献   

18.
A small-scale pile has been developed in the laboratory to investigate the thermo-mechanical behavior of energy piles subjected to a significant number of thermal cycles. The pile (20 mm external diameter), installed in dry sand, was initially loaded at its head to 0, 20, 40 and 60% of its ultimate bearing capacity (500 N). At the end of each loading step, 30 heating/cooling cycles were applied. The long-term behavior of the pile was observed in terms of head settlement, axial force profile, soil and pile temperature, and stress in soil. The results evidence the irreversible settlement of the pile head induced by thermal cycles under constant load head. In addition, the incremental irreversible settlement that accumulates after each thermal cycle decreases when the number of cycles increases. The evolution of irreversible pile head settlement versus number of cycles can be reasonably predicted by an asymptotic equation.  相似文献   

19.
首先介绍了太阳能地下混凝土储热桩热量利用率不足的现状,通过在已有太阳能混凝土储热桩传热模型的基础上,对不同取热工况中影响储热桩温度场变化的各种因素进行了传热过程的模拟分析,得出了持续取热及间断取热2种不同运行工况及热流密度、导热系数和比热容、埋管间距对桩内温度场变化的影响,然后合理的选择最优参数,分析桩内温度场的变化,提高取热效率,使混凝土桩内热量充分利用。  相似文献   

20.

This paper introduces a simplified method to investigate the influence of thermal loads on the shaft friction and tip resistance of energy piles. The method is based on the influence factors (λ and η) which are back-calculated drawing on a large number of field and model tests. Values for λ and η during heating and cooling are suggested. Moreover, a new equation is proposed to calculate total shaft friction. The equations concerning the relationship between η and temperature difference are recommended to investigate the impacts of the thermal load on the pile tip resistance. The slope of the linear equation of an end-bearing pile is 2.14 times that of a floating pile indicating that the pile tip resistance of an end-bearing pile is much more affected by the same thermal load.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号