首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MEIN  P.  MEIN  N.  MALHERBE  J.-M.  HEINZEL  P.  KNEER  F.  VON UEXKULL  M.  STAIGER  J. 《Solar physics》1997,172(1-2):161-170
A small flare was observed at the Teide Observatory on October 5, 1994. Simultaneous data were obtained at the German Vacuum Tower Telescope (VTT) with the MSDP spectrograph providing high-resolution imaging spectroscopy in two chromospheric lines, and the Gregory Coudé Telescope (GCT) providing information about the magnetic field. Basic flare characteristics are:The area of the flare kernel ( 2 x 2 arc sec) is similar in H and Caii 8542 Å.The early phase of the flare is characterized by a blue asymmetry in H and a red one in Caii 8542 Å line.The evolutions of line profiles are different; the red asymmetry observed in the Caii line is detected a few seconds later in H.The maximum asymmetry of the Caii line does not coincide with the maximum brightness.The flare occurs in a region of a strong horizontal gradient of the line-of-sight component of the magnetic field.Brightness and asymmetry in H and Caii are discussed in the context of standard flare models and velocity fields. Our observations suggest that a magnetic reconnection could occur at low levels of the solar atmosphere.  相似文献   

2.
Denker  C.  Johannesson  A.  Marquette  W.  Goode  P.R.  Wang  H.  Zirin  H. 《Solar physics》1999,184(1):87-102
The Big Bear Solar Observatory (BBSO) has a long tradition of synoptic full-disk observations. Synoptic observations of contrast enhanced full-disk images in the Caii K-line have been used with great success to reproduce the Hi L irradiance variability observed with the Upper Atmosphere Research Satellite (UARS). Recent improvements in data calibration procedures and image- processing techniques enable us now to provide contrast enhanced H full-disk images with a spatial resolution of approximately 2 and a temporal resolution of up to 3 frames min–1.In this first paper in a series, we describe the instruments, the data calibration procedures, and the image-processing techniques used to obtain our daily H full-disk observations. We also present the final data products such as low- and high-contrast images, and Carrington rotation charts. A time series of an erupting mini- filament further illustrates the quality of our H full-disk observations and motivate one of the future research projects. This lays a solid foundation for our subsequent studies of solar activity and chromospheric fine structures. The high quality and the sunrise- to-sunset operation of the H full-disk observations presented in this paper make them an ideal choice to study statistical properties of mini-filament eruptions, chromospheric differential rotation, and meridional flows within the chromosphere, as well as the evolution of active regions, filaments, flares, and prominences.  相似文献   

3.
    
We have compared three years of daily CaII K-line images from the Big Bear Solar Observatory (BBSO) with HI Lyman irradiance data from the Upper Atmosphere Research Satellite (UARS). The daily full-disk CaII K-line images are reduced to a new index of integrated excess emission, which reproduces both the 27 day rotational modulation and the solar cycle decrease in Ly irradiance. Our analysis shows that while plages reproduce the 27-day variation quite well, the total K-line emission excess above the quiet background is needed to reproduce the secular solar cycle trend in the Ly irradiance. The resulting K-line index exhibits a high degree of correlation (0.9) with the time series of measured Ly flux.  相似文献   

4.
After being turned off in 1972 the OSO-5 satellite was reactivated during the summer of 1974 for one year. The University of Paris experiment designed to monitor the solar L flux operated almost perfectly during that period which occurred near a minimum in solar activity. This new set of data is presented here, showing that neither the total L flux nor the flux emitted at the center of the line correlate with the solar activity indices in the same manner as previously found at higher levels of activity.These new observations confirm that the solar L flux varies approximately by a factor of two from solar maximum to solar minimum.Furthermore, the lower boundary of the transition region seems to be strongly perturbated near solar minimum, since the flux variations observed at the center of the L line are drastically different from all those previously reported. This seems to be related to the presence of large coronal holes over the Sun.  相似文献   

5.
The H observations of a selected sample of bright Be stars are presented. The available infrared observations at K band (2.2 m) of these stars have been used to find the infrared excess emission. The analysis of the combined data show thatL H, the luminosity of the H emission line, is proportional toL IR, the luminosity of the infrared excess emission. The linear correlation betweenL IR andL H shows that both the infrared excess and the H line originate in a common region. It is also detected that the infrared excess emission is produced throughout the whole envelope whereas the H is emitted in some defined region of the circumstellar (CS) envelope.  相似文献   

6.
The diagramV - log(1 +z e ) as function of (, ) is considered for the quasars. HereV is the apparent visual magnitude,z e is the emission line redshift, and are the equatorial coordinates. Two opposite extreme spots NE and SE are observed on the sky, where the inclination of the straight line fitting the dependenceV - log(1 +z e ) is maximum and minimum. The coordinates of the centres of these extreme spots are ( NE, NE) = (282°, +42°) and ( SE, SE) = (70°, -38°) with errors 5°. A hypothesis of the Superattractor (SA) is proposed to explain such an effect. Two independent tests of this hypothesis are realized. First, the dependence or the frequency a of the absorbers in QSO spectra on (, ) is investigated. A region of the larger a is found. The coordinates of its centre are (, ) = (82°, - 10°) with error 5°. Second, the cases ofz a >z e are plotted in the Mercatorial projection (, ). The most of the casesz -z e > 0.02 are concentrated within the circle with radiusR = 34° and centre (, ) = (50°, - 15°). The both anomalous regions overlap the Southern extreme spot around SE. The SA direction is (, ) = (67°, -21°) with errors about 12°. The redshift of SA isz SA = 1.7 ± 0.3 that corresponds to the distancer SA = (3100 ± 300)h –1 Mpc for the Hubble constantH 0 = 75h kms–1 Mpc–1. The SA mass isM SA ~ 1018-1020 M . The orientation of the normal to the quasiperiodical large-scale sheet structure on the sky occurs near SA.  相似文献   

7.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

8.
We use the Cerenkov line emission mechanism to give a new explanation of the observed intensity ratios, particularly the L/H ratio, of the emission lines of quasars. We give equations that restrict the choice of the parameter values. The parameters are the characteristic energy of the relativistic electrons, the number density of neutral hydrogen and its relative level populations. With reasonable choice of the parmaeters, we can obtain calculated L/H, H/H, P/H ratios in agreement with observed values. Our estimate for the gas density in the broad line region of quasars is 1015 cm–3, very different from previous estimates. Unlike previous theories, such a high density causes no difficulties with the Cerenkov line emission.  相似文献   

9.
We investigate the near-ultraviolet high-resolution LWR spectra of the stars Cas, And, Tau, Gem, Cru, Boo, and Peg, obtained with the aid of the International Ultraviolet Explorer Satellite. We have given here a list of the strongest and most prevalent emission lines in the near-ultraviolet spectra of Boo, KlIIIp, and Peg, M2.5II-III which have the same luminosity class and different spectral type. The near-ultraviolet continuum flux measurements and integrated emission line fluxes of these stars for the 2500–3200 Å region are presented in order to compare the variations in the appearance of the near-ultraviolet flux distribution with the temperature structure of their chromospheres for K and M giant stars. We also discuss differences between observed and calculated fluxes found from the Planck function.  相似文献   

10.
The region around the Herbig Ae/Be star LkH198 was imaged at 10m with the CAMIRAS camera at the Canada-France-Hawaii Telescope and the Nordic Optical Telescope. We discovered a deeply embedded companion 6 north of LkH198, which may be responsible for most of the far-infrared emission in the region and for driving the molecular flow. LkH198 appears point-like at our resolution (FWHM 1.3), excluding an extended envelope of transiently heated small grains as the dominant origin of the mid-infrared excess in that star.  相似文献   

11.
We briefly review the status of models of optical flare heating by electron bombardment. We recompute Brown's (1973a) flare model atmospheres using considerably revised radiative loss rates, based on Canfield's (1974b) method applied to , L, and H. Profiles of are computed and compared with observation. The computed profiles agree satisfactorily with those observed during the large 1972 August 7 flare, if spatial and velocity inhomogeneities are assumed. The electron injection rate inferred from is one order of magnitude less than that inferred from hard X-rays, for this event. This may be due to either (1) the neglect of a mechanism that reduces the thick-target electron injection rate or (2) failure to incorporate important radiative loss terms.  相似文献   

12.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

13.
M. Dizer 《Solar physics》1969,10(2):416-428
We report measurements made on the brightness in H of all parts of the flare photographed through a birefringent filter centered on H, using a scanning isodensitometer. From obtained isophotes of the flares we derived some information on the morphological changes in the flare and estimated the total energy in H of the flare.  相似文献   

14.
Solar activity changes in amplitude and long-term behavior irregularly. Fractal theory is used to examine the variation of solar activity, using daily solar indices (i.e., sunspot number, 10.7 cm radio flux, the SME L, Fexiv coronal emission, and the total solar irradiance measured by the ERB (Earth Radiation Budget) on the NIMBUS-7. It can handle irregular variations quantitatively. The fractal dimension of 10.7 cm radio fluxes in cycle 21 for periods of 7 days or less was 1.28, 1.3 for periods longer than 272 days, and 1.86 for periods between them, for example. Fractal dimensions for other solar indices show similar tendencies. These results suggest that solar activity varies more irregularly for time scales that are longer than several days and shorter than several months. Yearly values of fractal dimensions and bending points do not change in concert with the solar cycle.  相似文献   

15.
We analyze a time series of high resolution observations near the solar limb, obtained in H and the Mg b1 line. We identified arch-shaped dark mottles, which are thin, faint H structures observable under very good seeing conditions, best seen in H +0.75 Å. Their mean length is about 15, their mean height about 6 and indicative lifetimes is of the order of 5 min. They show negative (away from the observer) line-of-sight velocities. A possible interpretation is that material flows from the apex towards the feet of the arches.  相似文献   

16.
The effect of a propagating shock on the Hi L line and the polarization brightness in the inner solar wind region is investigated. We find that the shock produces measurable changes in both and, provided the measurements are made simultaneously, the alteration of the density and velocity across the shock can be derived. For a standing shock the effect on the L line and the white-light radiation is much smaller.  相似文献   

17.
High resolution photographic magnetograms are compared with H filtergrams (both on- and off - band) for a wide variety of solar features. It is verified that H filaments overlie neutral lines or bands and that H plages always occur at magnetic field clumps. However, the brightness of H plages bear no relation to magnetic field strength or polarity, and the direction of the magnetic field with respect to threads and filaments remains obscure. Counter-examples can be found for virtually every rule that has been formulated so far.Basic questions about the usefulness and final research goal of filtergrams and magnetograms are raised. It is shown that neither filtergram or magnetogram alone is capable of furnishing a unique solution. It is suggested that the proper direction for research is to use magnetograms, together with (as yet unspecified) additional sources of data, to understand H structures.  相似文献   

18.
Light-element abundances are compiled for six peculiar A stars (3 CenA, 2 CVn, HR 1732,v For, Cnc, and 112 Her) with Heilines very weak for their colours. The abundances are interpreted on the theory that peculiar A stars were once secondaries in binary systems in which the primaries exploded as type II supernovae. During the explosions of the primaries, protons were accelerated to high energies (>20 MeV) in shock waves at the secondaries, and spallation of He, C, N, and O occurred. This was followed by the arrival of heavier elements from the primaries. Abundances on 2 CVn, HR 1732, andv For were subsequently modified by surface nuclear reactions involving protons and -particles accelerated to lower energies (10 MeV), probably by magnetic fields. Successive (, ) reactions formed Si28 from Ne20, and (p, ) reactions acting on A40 and Ca40 may have contributed to the excesses of Cl observed on 2 CVn and HR 1732. These proposals have interesting implications with regard to the relative abundances of the iron-peak elements found on peculiar A stars and in the Solar System.  相似文献   

19.
Wheatland  M.S.  Litvinenko  Y.E. 《Solar physics》2002,211(1-2):255-274
The observed distribution of waiting times t between X-ray solar flares of greater than C1 class listed in the Geostationary Operational Environmental Satellite (GOES) catalog exhibits a power-law tail (t) for large waiting times (t>10hours). It is shown that the power-law index varies with the solar cycle. For the minimum phase of the cycle the index is =–1.4±0.1, and for the maximum phase of the cycle the index is –3.2±0.2. For all years 1975–2001, the index is –2.2±0.1. We present a simple theory to account for the observed waiting-time distributions in terms of a Poisson process with a time-varying rate (t). A common approximation of slow variation of the rate with respect to a waiting time is examined, and found to be valid for the GOES catalog events. Subject to this approximation the observed waiting-time distribution is determined by f(), the time distribution of the rate . If f() has a power-law form for low rates, the waiting time-distribution is predicted to have a power-law tail (t)–(3+) (>–3). Distributions f() are constructed from the GOES data. For the entire catalog a power-law index =–0.9±0.1 is found in the time distribution of rates for low rates (<0.1hours –1). For the maximum and minimum phases power-law indices =–0.1±0.5 and =–1.7±0.2, respectively, are observed. Hence, the Poisson theory together with the observed time distributions of the rate predict power-law tails in the waiting-time distributions with indices –2.2±0.1 (1975–2001), –2.9±0.5 (maximum phase) and –1.3±0.2 (minimum phase), consistent with the observations. These results suggest that the flaring rate varies in an intrinsically different way at solar maximum by comparison with solar minimum. The implications of these results for a recent model for flare statistics (Craig, 2001) and more generally for our understanding of the flare process are discussed.  相似文献   

20.
This investigation shows that statistically there are significant time delays between H and hard X-ray (HXR) emissions during solar flares; most impulsive flares produce HXR emissions up to 1 min before and up to 2 min after the onset of H emission. HXR emissions are also found to be peaked up to 2 min before the H emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号