首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
The luminescence spectra of a suite of natural sodium framework silicates including four different sodalite variants and tugtupite have been collected during X-ray irradiation as a function of temperature between 20 and 673 K. The origin of the emission bands observed in these samples is attributed to F-centres (360 nm), paramagnetic oxygen defects (400 and 450 nm), S2 ? ions (620 nm) and tetrahedral Fe3+ (730 nm). Luminescence in the yellow (550 nm) is tentatively attributed to Mn2+, and red luminescence in Cr-rich pink sodalite is possibly from Cr3+ activation. Sudden reduction in luminescence intensities of emission centres was observed for all minerals in the 60–120 K range. Since it is common to all the sodalite-group minerals, we infer it is a feature of the aluminosilicate framework. Sodalite luminescence has responses from substitutions on the framework (e.g. paramagnetic oxygen defects, Fe3+) which give sodalite properties akin to other framework silicates such as feldspar and quartz. However, the presence of the sodalite cage containing anions (such as F-centres, S2 ? ions) imparts additional properties akin to alkali halides. The possibility of coupling between Fe3+ and S2 ? is discussed. The overall luminescence behaviour of sodalite group can be understood in terms of competition between these centre types.  相似文献   

2.
The thermodynamic properties of carnegieite and NaAlSiO4 glass and liquid have been investigated through C p determinations from 10 to 1800 K and solution-calorimetry measurements. The relative entropies S 298-S0 of carnegieite and NaAlSiO4 glass are 118.7 and 124.8 J/mol K, respectively. The low-high carnegieite transition has been observed at 966 K with an enthalpy of transition of 8.1±0.3 kJ/mol, and the enthalpy of fusion of carnegieite at the congruent melting point of 1799 K is 21.7±3 kJ/mol. These results are consistent with the reported temperature of the nepheline-carnegieite transition and available thermodynamic data for nepheline. The entropy of quenched NaAlSiO4 glass at 0 K is 9.7±2 J/mol K and indicates considerable ordering among AlO4 and SiO4 tetrahedra. In the liquid state, progressive, temperature-induced Si, Al disordering could account for the high configurational heat capacity. Finally, the differences between the entropies and heat capacities of nepheline and carnegieite do not seem to conform to current polyhedral modeling of these properties  相似文献   

3.
 From heat capacities measured adiabatically at low temperatures, the standard entropies at 298.15 K of synthetic rutile (TiO2) and nepheline (NaAlSiO4) have been determined to be 50.0 ± 0.1 and 122.8 ± 0.3 J mol−1 K, respectively. These values agree with previous measurements and in particular confirm the higher entropy of nepheline with respect to that of the less dense NaAlSiO4 polymorph carnegieite. Received: 23 July 2001 / Accepted: 12 October 2001  相似文献   

4.
The photoluminescence and excitation spectra of sodalites from Greenland, Canada and Xinjiang (China) are observed at 300 and 10 K in detail. The features of the emission and excitation spectra of the orange-yellow fluorescence of these sodalites are independent of the locality. The emission spectra at 300 and 10 K consist of a broad band with a series of peaks and a maximum peak at 648 and 645.9 nm, respectively. The excitation spectra obtained by monitoring the orange-yellow fluorescence at 300 and 10 K consist of a main band with a peak at 392 nm. The luminescence efficiency of the heat-treated sodalite from Xinjiang is about seven times as high as that of untreated natural sodalite. The emission spectrum of the S2 center in sodalite at 10 K consists of a band with a clearly resolved structure with a series of maxima spaced about 560 cm−1 (20–25 nm) apart. Each narrow band at 10 K shows a fine structure consisting of a small peak due to the stretching vibration of the isotopic species of 32S34S, a main peak due to that of the isotopic species of 32S2 and five peaks due to phonon sidebands of the main peak.  相似文献   

5.
The heat capacity of synthetic ferrosilite, Fe2Si2O6, was measured between 2 and 820 K. The physical properties measurement system (PPMS, Quantum Design®) was used in the low-temperature region between 2 and 303 K. In the temperature region between 340 and 820 K measurements were performed using differential scanning calorimetry (DSC). The C p data show two transitions, a sharp λ-type at 38.7 K and a small shoulder near 9 K. The λ-type transition can be related to collinear antiferromagnetic ordering of the Fe2+ spin moments and the shoulder at 10 K to a change from a collinear to a canted-spin structure or to a Schottky anomaly related to an electronic transition. The C p data in the temperature region between 145 and 830 K are described by the polynomial $C_{p} {\left[ {\hbox{J\,mol}^{{ - 1}}\,{\hbox{K}}^{{ - 1}} } \right]} = 371.75 - 3219.2T^{{ - 1/2}} - 15.199 \times 10^{5} T^{{ - 2}} + 2.070 \times 10^{7} T^{{ - 3}} $ The heat content [H 298H 0] and the standard molar entropy [S 298S 0] are 28.6 ± 0.1 kJ mol?1 and 186.5 ± 0.5 J mol?1 K?1, respectively. The vibrational part of the heat capacitiy was calculated using an elastic Debye temperature of 541 K. The results of the calculations are in good agreement with the maximum theoretical magnetic entropy of 26.8 J mol?1 K?1 as calculated from the relationship 2*Rln5.  相似文献   

6.
A series of natural omphacites from a wide range of P, T occurrences were investigated by electron microprobe (EMP), infrared (IR)-, Mössbauer (MS)- and optical spectroscopy in the UV/VIS spectral range (UV/VIS), secondary ion mass spectrometry (SIMS) and single crystal structure refinement by X-ray diffraction (XRD) to study the influence of hydrogen loss on valence state and site occupancies of iron. In accordance with literature data we found Fe2+ at M1 as well as at M2, and in a first approach assigned Fe3+ to M1, as indicated by MS and XRD results. Hydrogen content of three of our omphacite samples were measured by SIMS. In combination with IR spectroscopy we determined an absorption coefficient: ε i,tot = 65,000 ± 3,000 lmolH2O ?1 cm?2. Using this new ε i,tot value, we obtained water concentrations ranging from 60 to 700 ppm H2O (by weight). Hydrogen loss was simulated by stepwise heating the most water rich samples in air up to 800°C. After heat treatment the samples were analyzed again by IR, MS, UV/VIS, and XRD. Depending on the type of the OH defect, the grade of dehydration with increasing temperature is significantly different. In samples relatively poor in Fe3+ (<0.1 Fe3+ pfu), hydrogen associated with vacancies at M2 (OH bands around 3,450 cm?1) starts to leave the structure at about 550°C and is completely gone at 780°C. Hydrogen associated with Al3+ at the tetrahedral site (OH bands around 3,525 cm?1, Koch-Müller et al., Am Mineral, 89:921–931, 2004) remains completely unaffected by heat treatment up to 700°C. But all hydrogen vanished at about 775°C. However, this is different for a more Fe3+-rich sample (0.2 Fe3+ pfu). Its IR spectrum is characterized by a very intense OH band at 3,515 cm?1 plus shoulder at 3,450 cm?1. We assign this intense high-energy band to vibrations of an OH dipole associated with Fe3+ at M1 and a vacancy either at M1 or M2. OH release during heating is positively correlated with decrease in Fe2+ and combined with increase in Fe3+. That dehydration is correlated with oxidation of Fe2+ is indirectly confirmed by annealing of one sample in a gas mixing furnace at 700°C under reducing conditions keeping almost constant OH? content and giving no indication of Fe2+-oxidation. Obtained data indicate that in samples with a relatively high concentration of Fe2+ at M2 and low-water concentrations, i.e., at a ratio of Fe2+ M2/H > 10 dehydration occurs by iron oxidation of Fe2+ exclusively at the M2 site following the reaction: \( {\left[ {{\text{Fe}}^{{{\text{2 + [ M2]}}}}{\text{OH}}^{ - } } \right]} = {\left[ {{\text{Fe}}^{{{\text{3 + [ M2]}}}} {\text{O}}^{{{\text{2}} - }} } \right]} + {\text{1/2}}\;{\text{H}}_{{\text{2}}} \uparrow . \) In samples having relatively low concentration of Fe2+ at M2 but high-water concentrations, i.e., ratio of Fe2+ M2/H < 5.0 dehydration occurs through oxidation of Fe2+ at M1.  相似文献   

7.
 Time-resolved luminescence spectra of natural and synthetic hydrous volcanic glasses with different colors and different Fe, Mn, and H2O content were measured, and the implications for the glass structure are discussed. Three luminescence ranges are observed at about 380–460, 500–560, and 700–760 nm. The very short-living (lifetimes less than 40 ns) blue band (380–460 nm) is most probably due to the 4T2(4D) →6A1(6S) and 4A1(4G) →6A1(6S) ligand field transitions of Fe3+. The green luminescence (500–560 nm) arises from the Mn2+ transition 4T1(4G) →6A1(6S). It shows weak vibronic structure, short lifetimes less than 250 μs, and indicates that Mn2+ is tetrahedrally coordinated, occupying sites with similar distortions and ion–oxygen interactions in all samples studied. The red luminescence (700–760 nm) arising from the 4T1(4G) →6A1(6S) transition of Fe3+ has much longer lifetimes of the order of several ms, and indicates that ferric iron is also mainly tetrahedrally coordinated. Increasing the total water content of the glasses leads to quenching of the red luminescence and decrease of the distortions of the Fe3+ polyhedra. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   

8.
Orange, ochre-coloured, light green and dark blue varieties of kyanite, ideally Al2SiO5, from Loliondo, Tanzania, have been characterised by electron microprobe analysis and polarised infrared and optical absorption spectroscopy. All colour varieties show elevated Fe contents of 0.39 to 1.31 wt.% FeO, but Ti contents only in the range of the EMP detection limit. Orange and ochre-coloured crystals have Mn contents of 0.23 and 0.06 wt.% MnO, respectively, the dark blue kyanite contains 0.28 wt.% Cr2O3, while the light green sample is nearly free from transition metal cations other than Fe. Polarised infrared spectra reveal OH defect concentrations of 3 to 17 wt.ppm H2O with structural OH defects partially replacing the OB (O2) oxygen atoms. Polarised optical absorption spectra show that the colour of all four varieties is governed by crystal field d-d transitions of trivalent cations, i.e. Fe3+ (all samples), Mn3+ (orange and ochre) and Cr3+ (blue kyanite), replacing Al in sixfold coordinated triclinic sites of the kyanite structure. Intervalence charge transfer, the prevalent colour-inducing mechanism in ‘usual’ (Cr-poor) blue kyanites, seems to play a very minor, if any, role in the present samples. Crystal field calculations in both a ‘classic’ tetragonal and in the semiempirical Superposition Model approach, accompanied by distance- and angle-least-squares refinements, indicate that Fe3+ preferably occupies the Al4 site, Cr3+ prefers the Al1 and Al2 sites, and Mn3+ predominantly enters the Al1 site. In each case specific local relaxation effects were observed according to the crystal chemical preferences of these transition metal cations. Furthermore, the high values obtained in the calculations for the interelectronic repulsion parameter Racah B correspond to a high ionic contribution to Me3+–O bonding in the kyanite structure. In the particular case of the blue sample, band positions specifically related to the high Racah B value enable this ‘unusual’ type of blue colouration of kyanite solely due to Cr3+ cations.  相似文献   

9.
The density and compressibility of seawater solutions from 0 to 95 °C have been examined using the Pitzer equations. The apparent molal volumes (X = V) and compressibilities (X = κ) are in the form $$ X_{\phi } = \bar{X}^{0} + A_{X} I/(1.2 \, m)\ln (1 + 1.2 \, I^{0.5} ) + \, 2{\text{RT }}m \, (\beta^{(0)X} + \beta^{(1)X} g(y) + C^{X} m) $$ where $ \bar{X}^{0} $ is the partial molal volume or compressibility, I is the ionic strength, m is the molality of sea salt, AX is the Debye–Hückel slope for volume (X = V) or adiabatic compressibility (X = κ s), and g(y) = (2/y 2)[1 ? (1 + y) exp(?y)] where y = 2I 0.5. The values of the partial molal volume and compressibility ( $ \bar{X}^{0} $ ) and Pitzer parameters (β (0)X , β (1)X and C X ) are functions of temperature in the form $$ Y^{X} = \sum_{i} a_{i} (T-T_{\text{R}} )^{i} $$ where a i are adjustable parameters, T is the absolute temperature in Kelvin, and T R = 298.15 K is the reference temperature. The standard errors of the seawater fits for the specific volumes and adiabatic compressibilities are 5.35E?06 cm3 g?1 and 1.0E?09 bar?1, respectively. These equations can be combined with similar equations for the osmotic coefficient, enthalpy and heat capacity to define the thermodynamic properties of sea salt to high temperatures at one atm. The Pitzer equations for the major components of seawater have been used to estimate the density and compressibility of seawater to 95 °C. The results are in reasonable agreement with the measured values (0.010E?03 g cm?3 for density and 0.050E?06 bar?1 for compressibility) from 0 to 80 °C and salinities from 0 to 45 g kg?1. The results make it possible to estimate the density and compressibility of all natural waters of known composition over a wide range of temperature and salinity.  相似文献   

10.
11.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

12.
We present the temperature dependence of the specific heat of CoCr2O4 between 2.08 K and 306 K in zero magnetic field. The lattice component can be described by the Komada–Westrum model with a characteristic temperature ΘKW = 541 K. The entropy of the magnetic component amounts to 33.51 J mol?1 K?1 at T = 298.15 K, in good agreement with the magnetic entropy of Co2+ and Cr3+ ions with completely quenched orbital moments. We compare our results with data available in literature.  相似文献   

13.
The intrinsic luminescence center (LC) of SO 4 2? appears at 360 nm in all types of sulfates, but is absent in sulfates with large quantities of impurities. Three nonequivalent Gd3+ LC have been observed in luminescence spectra of anhydrite. Gd3+, Ce3+ O 2 ? LC were established in celestite. Photoluminescence (PL) bands in the sulfates were assigned as follows: the band at 460 nm is related to Eu2+ (a connection with Al3+ or donor-acceptor pair is possible also) in sulfates of Ca and Ba; bands at 520 nm and 590 nm are related to VO4, MoO4 and TiO4 substituting SO4; the band at 660 nm is assigned to Ti3+ X-ray luminescence (XL) band at 620 nm is assigned to Ag+.  相似文献   

14.
Phase relations in the system NaAlSiO4-NaGaSiO4 to 945° C at 1 kbar P(H2O) are dominated by stability of Na(Al,Ga)SiO4 with the beryllonite-type structure. The nepheline structure is restricted to NaAlSiO4-rich compositions at moderate and high temperature. Structure-composition relationships are controlled by space-fitting requirements of both framework and cavity cations, as in related systems. The two-phase (nepheline-type+beryllonite-type) field has been delineated from the end-member NaAlSiO4 composition up to the peritectic point at about 945° C (and 60 mol% NaGaSiO4), using a volume-composition relationship for the beryllonite-type phase, phase appearance, and electron microprobe analysis. At end-member NaGaSiO4 composition, the beryllonite-type phase is stable to the melting point (902±5° C). At end-member NaAlSiO4 composition, the beryllonite-type?nepheline-type transformation occurs at 348±2° C, and is associated with an increase in molar volume of 2.4% and enthalpy of 5170±40J·mol?1. Thus, end-member NaAlSiO4 nepheline, and probably all sub-potassic nephelines as well, are metastable at very-low geological temperatures.  相似文献   

15.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

16.
The crystal chemistry of paratacamite has been re-evaluated by studying a crystal from the holotype specimen BM86958 of composition Cu3.71Zn0.29(OH)6Cl2 using single-crystal X-ray diffraction at 100, 200, 300, 353, 393 and 423 K. At 300 K paratacamite has space group $R\bar{3}$ with unit-cell parameters a 13.644 and c 14.035 Å and exhibits a pronounced subcell, a′ = ½a and c′ = c, analogous to that of the closely related mineral herbertsmithite, Cu3Zn(OH)6Cl2. Between 353 and 393 K, paratacamite undergoes a reversible phase transformation to the herbertsmithite-like substructure, space group $R\bar{3}m$ , unit-cell parameters a 6.839 and c 14.072 Å (393 K). The transformation is characterised by a gradual reduction in intensity of superlattice reflections, which are absent at 393 and 443 K. On cooling from 443 to 300 K at ~10 K min?1, the superlattice reflections reappear and the refined structures ( $R\bar{3}$ ) of the initial and recovered 300 K states are almost identical. The complete reversibility of the transformation establishes that paratacamite of composition Cu3.71Zn0.29(OH)6Cl2 is thermodynamically stable at ambient temperatures. The nature of the rhombic distortion of the M(2)O6 octahedron is discussed by considering two possibilities that are dependent upon the nature of cation substitution in the interlayer sites.  相似文献   

17.
The orientation dependence of the luminescence of a well-characterized plagioclase crystal at room temperature and 40 K is reported. A beam of H + ions was used to provide the excitation. Ion beam luminescence provides emissions effectively from the bulk of the material, and therefore minimizes the contribution to the luminescence from atypical regions. The intensity of the luminescence is strongly orientation-dependent. The intensity and photon energy, particularly of the red/infrared and yellow emission bands, vary significantly. We interpreted this as resulting from Fe 3+ and Mn 2+ activator ions, respectively, on crystallographic sites with low point symmetry. An emission at 860 nm was also significantly orientation-dependent. The blue luminescence showed the least variability. At room temperature, a 350 nm near-UV emission was noted, whereas at 40 K, emissions were at 240, 260, 300 and 340 nm. UV emissions may result from Na + diffusion along interfaces within the plagioclase, notably albite-law (010) twins. This variability has significant consequences for the use of single-crystal quantitative luminescence techniques. We have also studied the dependence of the peak intensities and profiles during prolonged ion beam bombardment with heavier (He +) ions. Broadening of the red-infrared emission is interpreted as reflecting growing amorphization of the sample.  相似文献   

18.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

19.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

20.
The chemistry of soil solutions can be altered by human activities, due to the intense agricultural and husbandry, leading to leaching of nutrients and subsequently elevating ground water levels. Multivariate statistical and inverse geochemical modeling techniques were used to determine the main factors controlling soil solution chemistry of calcareous soils. In this research, a total of 21 calcareous soils was characterized and assessed for soil solution using soil column. The major cations in the studied soil solutions were in the decreasing order as Ca2+ > Mg2+ > Na+ > K+. The anions were also arranged in decreasing order as HCO $ _{3}^{ - } $  > Cl $ ^{ - } $  > SO $ _{4}^{2 - } $  > NO $ _{3}^{ - } $ . Concentrations of NO $ _{3}^{ - } $ , P, and K+ in soil solutions were in the range of 6.8–307.5 mg l?1 (mean 63.2 mg l?1), 5.0–10.4 mg l?1 (mean 5.9 mg l?1), and 2.8–54.6 mg l?1 (mean 11.3 mg l?1), respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by the solubility of dicalcium phosphate dihydrate and dicalcium phosphate. Interactions between soil properties and observed solubility of nutrients were described, and put into empirical multivariate formulations. Obtained equations contained electrical conductivity (EC) as a key factor in determining nutrients solubility. Inverse geochemical modeling of soil solution using PHREEQC indicates the dissolution of calcite, anhydrite, halite, CO2 (g), N2 (g), and hydroxyapatite, and precipitation of sulfur. Cation exchange between Ca2+, Mg2+, K+ and Na+ occurred with Mg2+ and K+ into the solution, and Ca2+ and Na+ out of the solution. Determination of soil solution will improve soil management in the area, and preventing groundwater deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号