首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

面波频散曲线对于横波速度、纵波速度、层厚等近地表地球物理参数的敏感度相差较大, 现阶段通过频散曲线可以获得较为精确的近地表横波速度与厚度信息, 但无法直接对纵波速度进行反演.研究表明, 泊松比对于波长(W)-探测深度(D)关系较为敏感.基于这一发现, 本文根据频散曲线与反演获取的横波速度结构计算平均速度, 获取W-D关系曲线.但合成数据测试证明, 因近地表浅层对应的W-D曲线变化较小, 且浅层纵波速度反演不准确会使误差累积, 直接反演W-D曲线无法获取可靠的纵波速度剖面.本文改进了基于平均速度分析的近地表纵波速度反演方法, 在目标函数中加入了对浅层信息较为敏感的W/D-D信息, 同时对W-D曲线与W/D-D曲线进行联合反演.合成数据测试证明可以获取较为准确地浅层与深层纵波速度.将该方法应用于实际地震数据中, 联合反演得到的纵波速度剖面与微测井数据较为吻合, 证明本文提出的方法可以不借助其他信息, 仅通过面波频散信息, 获取更为准确地近地表纵波信息.

  相似文献   

2.
The Thurber iterative simultaneous inversion program is used to determine the three-dimensionalP-wave velocity structure in the Aswan seismic region of Egypt. The tomographic inversion presented in this study is based on 1131P-phase observations at 13 stations from 89 local earthquakes, all of which occurred within the Kalabsha fault zone. The assumed initial velocity model is that deduced from local explosion experiments. The results indicate that the Aswan region is characterized by a heterogeneous crust, consisting of a shallow, low-velocity zone and a deeper high-velocity anomaly. Seismic velocity structure within the shallow part demonstrates that the inferred change in velocity exists primarily across the east-west trending Kalabsha fault scarp, whereas the high-velocity zone is located south of this fault. Two well-resolved, low-velocity zones appear within the upper 6 km of the crust. The first coincides with a graben structure located between the Kalabsha and Seiyal faults and the second exists between the N-S Kurkur fault and the main axis of Lake Aswan. Both low-velocity zones occupy an area of approximately 30×40 km, located along the western bank of the lake. The most significant result of this study is that the location of the deeper, high-velocity anomaly coincides with the concentration of seismic activity in the lower crustal layer.  相似文献   

3.
We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the ?? ?2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient  相似文献   

4.
复杂地表条件下共反射面元(CRS)叠加方法研究   总被引:17,自引:3,他引:17  
在地表地形复杂的情况下,静校正不易做好,这是制约山地资料处理质量的一个很重要的因素.复杂地表共反射面元(CRS)叠加不需对叠前数据做静校正,而且在得到叠加剖面后可以利用叠加得到的波场参数剖面实现基准面重建.地震数据的试算表明,复杂地表CRS叠加得出的剖面与常规处理剖面相比有着较高的信噪比和同相轴连续性.与水平地表CRS叠加不同的是,在复杂地表CRS叠加的时距公式中,波场三参数耦合,难以通过简化CRS道集的方法将它们全部分离并逐个优化.引入模拟退火算法后,有效地解决了这一组合优化的难题.  相似文献   

5.
Seismic data acquired along rugged topographic surfaces present well‐known problems in seismic imaging. In conventional seismic data processing, datum statics are approximated by the surface consistence assumption, which states that all seismic rays travel vertically in the top layer. Hence, the datum static for each single trace is constant. In case this assumption does not apply, non‐constant statics are required. The common reflection surface (CRS) stack for rugged surface topography provides the capability to deal with this non‐vertical static issue. It handles the surface elevation as a coordinate component and treats the elevation variation in the sense of directional datuming. In this paper I apply the CRS stack method to a synthetic data set that simulates the acquisition along an irregular surface topography. After the CRS stack, by means of the wavefield attributes, a simple algorithm for redatuming the CRS stack section to an arbitrarily chosen planar surface is performed. The redatumed section simulates a stack section whose acquisition surface is the chosen planar surface.  相似文献   

6.
Expanding the magnetic field intensity measured at a constant altitude in a Taylor series allows the efficient continuation of such fields onto any given arbitrary surface. This is particularly useful for draping of constant altitude surveys in areas of rugged topography. The Taylor series approach allows the continuation to points below the level of the shallowest magnetic source present. Low-pass filtering is necessary to ensure the convergence of the series. The filtering parameters can be estimated from the power spectrum of the observed field and the maximum continuation distance. A synthetic data example shows that convergence of the series is slowest in areas of high vertical gradients, usually associated with body edges, and large (downward) continuation distances. The Taylor series method is used to drape data from a constant barometric altitude survey from central British Columbia (Canada) onto a surface with a constant terrain clearance. This survey is then joined to an adjacent survey flown in the draped mode. The resolution and amplitudes of the two surveys is seen to be comparable and results in a more coherent combined data set than that where no computational draping is done.  相似文献   

7.
8.
We present an extension of the Common Reflection Surface (CRS) stack that provides support for an arbitrary top surface topography. CRS stacking can be applied to the original prestack data without the need for any elevation statics. The CRS-stacked zero- offset section can be corrected (redatumed) to a given planar level by kinematic wave field attributes. The seismic processing results indicate that the CRS stacked section for rugged surface topography is better than the conventional stacked section for S/N ratio and better continuity of reflection events. Considering the multiple paths of zero-offset rays, the method deals with reflection information coming from different dips and performs the stack using the method of dip decomposition, which improves the kinematic and dynamic character of CRS stacked sections.  相似文献   

9.
利用2002年1月至2008年12月天津地震台网产出的初至P波走时资料,通过震源与速度结构联合反演算法,计算出天津及邻近地区三维P波速度结构的优化模型,同时获得1 738次中小地震的重新定位结果.结果表明,天津及邻近地区中小地震分布具有与强震相同的地壳深部介质背景,主要分布在高低速度过渡带;天津及邻近地区中小地震震源深度重新定位后更集中分布在10-15 km深度范围内.  相似文献   

10.
A joint inversion of both first and refracted arrivals is applied on a seismic line, acquired onshore, in order to obtain a well‐resolved velocity field for the computation of static corrections. The use of different arrivals in the inversion involves exploiting the information derived from the different raypaths associated with each wave type, thus enhancing the reliability of the inversion. The data was gathered by Saudi Aramco in an area of the Arabian Peninsula characterized by strong lateral variations, both in topography and shallow velocity, and where therefore a well‐defined near‐surface velocity field is important. In addition to velocity, the depth distribution of the quality factor Q is computed from the tomographic inversion of the seismic‐signal frequency shift. Thus, the Q‐factor field is used to perform an inverse Q‐data filtering and improve the resolution of the final stacked section.  相似文献   

11.
12.
Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas (39°N–41.5°N, 115.5°E–119.5°E), we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion. We obtained some detailed information about the Tangshan earthquake region and its adjacent areas, including sedimentary thickness, Moho depth, and crustal and upper mantle S-wave velocity. Meanwhile, we also obtained the vP/vS structure along two sections across the Tangshan region. The results show that: (1) the Moho depth ranges from 30 km to 38 km, and it becomes shallower from Yanshan uplift area to North China basin; (2) the thickness of sedimentary layer ranges from 0 km to 3 km, and it thickens from Yanshan uplift region to North China basin; (3) the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure, while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust. Compared with the upper crust, the heterogeneity of the middle and lower crust is more obvious; (4) the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust, and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.  相似文献   

13.

获取准确的近地表横波速度对复杂地表条件下弹性波地震数据处理和成像非常重要.在浅层面波工程勘探中通过反演提取的频散曲线可以获得近地表横波速度结构.在多道面波频散曲线分析中, 频散关系拾取的精度直接影响速度反演结果的可靠性.本文在多道面波叠加及自动拾取频散曲线基础上, 提出了基于面波频散曲线聚类分析的近地表横波速度反演方法.该方法充分考虑了低信噪比条件下面波频散曲线的不确定性, 通过在频散曲线拾取中引入曼哈顿距离K-Means聚类算法提高频散曲线拾取的准确性.采用多道多窗口叠加技术提高了面波反演对横向速度变化的适应性, 通过聚类算法和多窗口叠加提高反演的可靠性, 聚类算法获得较准确的频散曲线更利于后续横波速度反演过程.模拟数据算例对比表明本文提出的方法比常规算法效果更好, 精度更高.将提出的方法应用于工程勘探和油气勘探的面波数据反演中, 结果也验证了该方法的有效性.

  相似文献   

14.
上地壳纵横波速度结构相关反演成像方法   总被引:3,自引:0,他引:3       下载免费PDF全文
基于纵横波初至走时数据的层析成像方法越来越广泛地被应用于揭示不同构造域壳幔速度结构特征.我们从同一地质体的纵横波速度属性相关这一基本思想出发,提出一种相关反演成像的方法:纵横波速度反演交替进行,在迭代反演过程中每通过一次反演获得相应的纵波速度(或横波速度)结构后,更新相应的纵横波速度比模型以及相应的横波(或纵波)速度反演的初始模型,然后继续开展后续横波(或纵波)速度反演工作.在反演过程中依据纵横波速度的相关性信息和射线路径长度将走时残差以不同权重分配到射线路径经过的单元,依据网格节点周围平均的慢度扰动更新速度模型.正反演过程分别基于有限差分走时计算方法和反投影成像方法.两种典型模型试验表明,该技术应用于上地壳速度结构反演成像过程,可有效提高反演结果的可靠性,在很大程度上避免了常规单独反演纵波和横波速度过程容易带来的畸变和失真.该方法应用于重建青藏高原西部札达—泉水沟深地震测深(DSS)剖面下方的上地壳速度结构,揭示出与青藏高原西缘板块碰撞相关的上地壳速度结构特征.  相似文献   

15.
We use nearly 2100 P-wave arrival times from 166 local earthquakes to investigate the 3-D compressional velocity structure of the upper crust of Slovenia using the simultaneous inversion algorithm developed by (Michelini and McEvilly, 1991). Remarkable and stable features of the resolved model are the relatively high velocities in western Slovenia and the low velocities in central Slovenia, SE of the Ljubljana basin. The boundary between these two anomalies follows approximately the NNW-SSE direction that coincides with the general strike of the External Dinarides. We interpret this feature as the upper crustal expression caused by the tectonic processes occurring along the active margin of the Adria promontory/microplate.  相似文献   

16.
Seismological studies generally suggest that the Earth’s inner core is anisotropic and the anisotropic structure changes significantly both laterally and with depth. Previous body-wave studies of the inner core have relied on ray tracing or waveform modeling using one-dimensional (1D) models. Here we present non-linear tomographic inversions of the inner core anisotropy using three-dimensional (3D) ray tracing, spline parameterization, and a large collection of PKP differential travel times. We adapt a pseudo-bending ray tracing (PBR) method in spherical coordinates for seismic rays that traverse the inner core (PKP(DF) phase). The method iteratively perturbs each discontinuity point and continuous segment of the ray through 3D earth structure so that its travel time is minimum. The 3D anisotropic structure of the inner core is approximated to the first order as 3D heterogeneous (but isotropic) structure for a given ray. The data are corrected using a scaled mantle tomographic model. The inner core anisotropy model obtained has the following major features. (1) The model has strong hemispherical and depth variation. The isotropic velocity in the topmost inner core is greater in quasi-eastern hemisphere (QEH) (40–160°E) than in quasi-western hemisphere (QWH) (other longitudes). The anisotropy is weak in QEH to the depth of 600–700 km below the inner core boundary (ICB), while in QWH, the anisotropy increases at much shallower depth (about 100–200 km below the ICB) to about 3–4%, then remains at about 2–4% throughout the rest of the inner core. (2) The anisotropy form changes abruptly (over a depth range of about 150 km) at the radius of about 600 km, slightly less than half of the inner core radius, forming a distinct inner inner core (IIC). The velocity in the IIC has maximums at equatorial and polar directions and minimum at an angle of about 40° from the equatorial plane. The velocity in the outer inner core (OIC), however, changes little for ray directions 0–40° from the equatorial plane. (3) Despite large variation of the anisotropy, the isotropic velocity (Voigt average) throughout the inner core is nearly uniform. The results suggest that the OIC is likely composed of the same type of iron crystals with uniform chemistry, but the IIC may be composed of a different type of crystal alignment, a different iron phase, or a different chemical composition. Our tests on model parameterization, mantle correction, and linear and non-linear inversion suggest the main features of our model are very robust. However, fine scale structures are likely to differ, particularly in the major transition zones, e.g., in the topmost QWH (isotropy to anisotropy), between OIC and IIC (change in the form of anisotropy), and between QEH and QWH in OIC (difference in anisotropy strength). Searches for possible waveform complications from these boundaries need to be aware of the directional dependence and geographical variation to be successful.  相似文献   

17.
单斜介质中方位NMO速度Thomsen参数反演方法研究   总被引:9,自引:0,他引:9       下载免费PDF全文
采用启发式共轭梯度法,即随机爬山法 + 共轭梯度法,利用单斜介质中P波方位NMO速度椭圆轴向偏转角度接近于零这一特性,简化P波方位NMO速度公式,并利用多方位P波NMO速度,反演出某一初始CMP观测线与自然坐标系之间的夹角,作为进一步进行Thomsen各向异性参数反演的基础. 根据各向异性介质中方位NMO速度与Thomsen参数之间的关系,建立了利用三种波的多方位NMO速度及垂直传播速度反演单层单斜各向异性介质Thomsen各向异性参数的目标函数. 对计算的理论值添加具有一定标准差的正态分布的随机噪声,用以模拟实际观测存在的误差,通过对加噪后的数据进行多次反演的误差分析,表明了所建立的目标函数及选用的反演方法是有效可行的,而且相对稳定.  相似文献   

18.
A model for topographic correction and land surface reflectance estimation for optical remote sensing data in rugged terrian is presented.Considering a directional-directional reflectance that is used for direct solar irradiance correction and a hemispheric-directional reflectance that is used for atmospheric diffuse irradiance and terrain background reflected irradiance correction respectively,the directional reflectance-based model for topographic effects removing and land surface reflectance calculation is developed by deducing the directional reflectance with topographic effects and using a radiative transfer model.A canopy reflectance simulated by GOMS model and Landsat/TM raw data covering Jiangxi rugged area were taken to validate the performance of the model presented in the paper.The validation results show that the model presented here has a remarkable ability to correct topography and estimate land surface reflectance and also provides a technique method for sequently quantitative remote sensing application in terrain area.  相似文献   

19.
1980—2012年河北省及邻区测震台网地震记录,使用了河北省南部及邻区(34.0°—38.0°N,112.0°—118.0°E)63个固定地震台站和4 540个地震事件,得到27 709条P波到时数据,采用速度结构与地震位置联合反演的方法,获得研究区内地壳P波三维速度结构,重新确定中小地震震源位置。速度结构揭示:研究区域内地壳的P波速度结构存在明显的横向不均匀性,在10—25 km深度上横向不均匀性更加显著;大地震基本发生在速度异常体或高低速交界区域。地震重新定位结果显示:地震P波走时均方根残差(RMS)从1.68 s降到0.82 s;地震呈明显条带状分布,震源深度与地质构造年代具有一定负相关性。  相似文献   

20.
频率域粘弹性声波透射波形速度反演   总被引:6,自引:0,他引:6       下载免费PDF全文
在用稀疏矩阵的LU分解技术对频率域粘弹性声波方程进行直接求解的基础上,根据失配函数二范数最小准则, 用预条件梯度类方法对粘弹性声波介质的速度结构进行了逐频反演. 局部非均匀介质模型和层状介质模型速度结构反演的实验结果表明,不同频率能够反映地下介质的多尺度物性结构(低频数据对应与介质物性的大尺度结构),用低频反演结果作为高频反演的初值逼近这一顺序模式,能大大改善反演过程中解的非唯一性. 而且,在反演过程中用Hess矩阵的对角线元素来做梯度类方法的预条件算子,能够吸收了高斯牛顿法的二次收敛优势, 使得本文算法具有较快的收敛速度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号