首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying high groundwater recharge areas is important for the conservation of groundwater quality and quantity. A common practice used by previous studies is to estimate groundwater recharge potential (GRP) using recharge potential analysis (RPA) under different environments. These studies use the estimated GRP to identify the high potential groundwater recharge sites. However, the RPA parameters are subjectively defined for these previous studies. To remove the supposition, this study proposes a systematic approach that defines the RPA parameter values based on the theory of parameter identification. This study uses dissolved oxygen (DO) indicators to calibrate the RPA parameters. This calibration improves the correlation coefficient between the DO indicators and computed GRP values from 0.63 to 0.87. By comparing the initial values, these results indicate that the estimated RPA parameters better represent the field infiltration characteristic. This result also indicates that defining the RPA parameter values based on DO indicators is necessary and important for accuracy. These calibrated parameters are used to estimate the GRP distribution of Taiwan’s Pingtung Plain. The GRP values are delineated into five levels. High and excellent GRP areas are defined as high recharge areas, which compose about 26.74 % of the study area. Based on the proposed method, the estimated GRP distribution can accurately represent the study area’s field recharge characteristics. These study results can be a good reference for groundwater recharge analyses, specifically if well data is limited or difficult to obtain.  相似文献   

2.
Yager RM 《Ground water》2004,42(3):390-400
Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.  相似文献   

3.
Monte Carlo procedures were used to evaluate the effects of spatial variations in the values of the infiltration parameter on the results of the ANSWERS distributed runoff and erosion model. Simulation results obtained were compared with measured values. Field infiltration measurements indicated spatial correlation at much smaller distances than the size of an element. Therefore, at first only the error of the mean had to be taken into consideration for block infiltration rates. Consequently, not only single hydrographs were produced, but also error bands. Secondly, nine other hypothetical spatial correlation structures were also evaluated using Monte Carlo methods. in particular at low nugget variances, increasing spatial correlation of infiltration resulted in increasing coefficients of variation in model outputs. In general, rainstorms with low rainfall intensities were more difficult to simulate accurately than extreme events with high rainfall intensities. This is explained by the greater influence of the infiltration uncertainties at low rainfall intensities.  相似文献   

4.
将基于倾角扫描的奇异值分解与经验模式分解法相结合应用到地震资料随机噪声压制中。首先利用经验模式分解法消除部分噪声,增强地震道有效信号的相关性,再利用奇异值分解对地震信号进行同相轴自动追踪,截取小时窗数据体,并进行同相轴拉平处理,经SVD计算小时窗数据中心点的值来代替计算样点的值,最终实现随机噪声的压制。理论模型试算和实际资料处理表明,本文提出的EMD-SVD方法简单易行,比单一的SVD方法去噪效果更显著有效地消除了地震资料中的随机噪声,提高了地震资料的信噪比,并改善了叠加剖面的质量。  相似文献   

5.
Consideration of the dynamic effects of the site and structural parameter uncertainty is required by the standards for nuclear power plants (NPPs) in most countries. The anti-seismic standards provide two basic methods to analyze parameter uncertainty. Directly manually dealing with the calculated floor response spectra (FRS) values of deterministic approaches is the first method. The second method is to perform probability statistical analysis of the FRS results on the basis of the Monte Carlo method. The two methods can only reflect the overall effects of the uncertain parameters, and the results cannot be screened for a certain parameter’s influence and contribution. In this study, based on the dynamic analyses of the floor response spectra of NPPs, a comprehensive index of the assessed impact for various uncertain parameters is presented and recommended, including the correlation coefficient, the regression slope coefficient and Tornado swing. To compensate for the lack of guidance in the NPP seismic standards, the proposed method can effectively be used to evaluate the contributions of various parameters from the aspects of sensitivity, acuity and statistical swing correlations. Finally, examples are provided to verify the set of indicators from systematic and intuitive perspectives, such as the uncertainty of the impact of the structure parameters and the contribution to the FRS of NPPs. The index is sensitive to different types of parameters, which provides a new technique for evaluating the anti-seismic parameters required for NPPs.  相似文献   

6.
Singular value decomposition (SVD) is applied to the identification of seismic reflections by using two different models: the impulse response model, where a seismic trace is assumed to consist of a known signal pulse convolved with a reflection coefficient series plus noise, and the delayed pulse model, where the seismic signal is assumed to consist of a small number of delayed pulses of known shape and with unknown amplitudes and arrival times. SVD clearly shows how least-squares estimation of the reflection coefficients may become unstable, since a division by the singular values is required. Two methods for stabilizing this procedure are investigated. The inverse of the singular values may be replaced by zeros when they are less than a given threshold. This is called the SVD cut-off method. Alternatively, we may use ridge regression which in filter design corresponds to assuming white noise. Statistical methods are used to compute an optimal SVD cut-off level and also to compute an optimal weighting parameter in ridge regression. Numerical studies indicate that the use of SVD cut-off or ridge regression stabilizes the least-squares procedure, but that the results are inferior to maximum-likelihood estimation where the noise is assumed to be filtered white noise. For the delayed pulse model, we use a linearization procedure to iteratively update the estimates of both the reflection amplitudes and the arrival times. In each step, the optimal SVD cut-off method is used. Confidence regions for the estimated reflection amplitudes and arrival times are also computed. Synthetic data examples demonstrate the effectiveness of this method. In a real data example, the maximum-likelihood method assuming an impulse response model is first used to obtain initial estimates of the number of reflections and their amplitudes and traveltimes. Then the iterative procedure is used to obtain improved estimates of the reflection amplitudes and traveltimes.  相似文献   

7.
A major complication caused by anisotropy in velocity analysis and imaging is the uncertainty in estimating the vertical velocity and depth scale of the model from surface data. For laterally homogeneous VTI (transversely isotropic with a vertical symmetry axis) media above the target reflector, P‐wave moveout has to be combined with other information (e.g. borehole data or converted waves) to build velocity models for depth imaging. The presence of lateral heterogeneity in the overburden creates the dependence of P‐wave reflection data on all three relevant parameters (the vertical velocity VP0 and the Thomsen coefficients ε and δ) and, therefore, may help to determine the depth scale of the velocity field. Here, we propose a tomographic algorithm designed to invert NMO ellipses (obtained from azimuthally varying stacking velocities) and zero‐offset traveltimes of P‐waves for the parameters of homogeneous VTI layers separated by either plane dipping or curved interfaces. For plane non‐intersecting layer boundaries, the interval parameters cannot be recovered from P‐wave moveout in a unique way. Nonetheless, if the reflectors have sufficiently different azimuths, a priori knowledge of any single interval parameter makes it possible to reconstruct the whole model in depth. For example, the parameter estimation becomes unique if the subsurface layer is known to be isotropic. In the case of 2D inversion on the dip line of co‐orientated reflectors, it is necessary to specify one parameter (e.g. the vertical velocity) per layer. Despite the higher complexity of models with curved interfaces, the increased angle coverage of reflected rays helps to resolve the trade‐offs between the medium parameters. Singular value decomposition (SVD) shows that in the presence of sufficient interface curvature all parameters needed for anisotropic depth processing can be obtained solely from conventional‐spread P‐wave moveout. By performing tests on noise‐contaminated data we demonstrate that the tomographic inversion procedure reconstructs both the interfaces and the VTI parameters with high accuracy. Both SVD analysis and moveout inversion are implemented using an efficient modelling technique based on the theory of NMO‐velocity surfaces generalized for wave propagation through curved interfaces.  相似文献   

8.
Unstructured mesh models can resolve the model domain with a variable and very fine mesh resolution. Nevertheless, tuning the model setup is still required (for example because of parametrized sub-grid processes). Adjoint models are commonly used to calculate sensitivities of ocean models and optimize their parameters so that better agreement is achieved between model simulations and observations. One major obstacle in developing an adjoint model is the need to update the reverse code after each modification of the forward code, which is not always straightforward. Automatic differentiation is a tool to generate the adjoint model code without user input. So far this method has mainly been used for structured mesh ocean models. We present here an unstructured mesh, adjoint, tidal model using this technique, and discuss the sensitivities of the misfit between simulated and observed elevations with respect to open boundary values, the bottom friction coefficient and the bottom topography. The forward model simulates tides on the European Continental Shelf and we show that the tidal model dynamics in the adjoint simulations can be used to define regions, where parameters or mesh has to be optimized. We analyze the dependence of the sensitivities on the wave type and mesh resolution to specify whether the model misfit originates from physical or numerical model deficiencies. In the sensitivity patterns, it is possible to identify islands not resolved in the mesh. We propose to refine the mesh prior to the parameter optimization.  相似文献   

9.
基于双相介质理论的储层参数反演方法   总被引:2,自引:2,他引:0       下载免费PDF全文
传统基于单相介质理论的储层参数反演方法将孔隙流体与固体骨架等效为单一固体,弱化了孔隙流体的影响,反演结果精度不高.本文提出根据双相介质理论反演储层参数的方法.首先,在前人研究的基础上,利用岩石物理模型建立弹性参数与孔隙度、饱和度、泥质含量等储层参数间的关系,进而将双相介质反射系数推导为储层参数的函数;其次,根据贝叶斯反演理论,在高斯噪声假设的基础上,采用更加符合实际情况的修正柯西分布函数描述反射系数的稀疏性,推导出储层物性参数目标反演函数;最后,应用差分进化非线性全局寻优算法来求解目标反演函数,使得反演结果与实际资料间误差最小.新方法旨在突出流体对介质反射系数的影响,以期得到较高的储层参数反演精度.模型与实际资料测试均表明该方法可行、有效且反演精度较高.  相似文献   

10.
A general technique for calculating the sensitivities, uncertainties and overall imprecision of a model to a set of input parameters is described and applied to the calculation of CFM induced stratospheric ozone depletion. The input data set used is reaction rates and the technique highlights those that most need further study in the laboratory. The convolution of individual uncertainties to obtain an overall imprecision gives good agreement with the results of Monte-Carlo calculations using the same model.A paper presented at the IAGA/IAMAP Joint Assembly at Seattle, Washington, USA. 22 August–3 September 1977.  相似文献   

11.
A significant practical problem with the pilot point method is to choose the location of the pilot points. We present a method that is intended to relieve the modeler from much of this responsibility. The basic idea is that a very large number of pilot points are distributed more or less uniformly over the model area. Singular value decomposition (SVD) of the (possibly weighted) sensitivity matrix of the pilot point based model produces eigenvectors of which we pick a small number corresponding to significant eigenvalues. Super parameters are defined as factors through which parameter combinations corresponding to the chosen eigenvectors are multiplied to obtain the pilot point values. The model can thus be transformed from having many-pilot-point parameters to having a few super parameters that can be estimated by nonlinear regression on the basis of the available observations. (This technique can be used for any highly parameterized groundwater model, not only for models parameterized by the pilot point method.)  相似文献   

12.
The level of model complexity that can be effectively supported by available information has long been a subject of many studies in hydrologic modelling. In particular, distributed parameter models tend to be regarded as overparameterized because of numerous parameters used to describe spatially heterogeneous hydrologic processes. However, it is not clear how parameters and observations influence the degree of overparameterization, equifinality of parameter values, and uncertainty. This study investigated the impact of the numbers of observations and parameters on calibration quality including equifinality among calibrated parameter values, model performance, and output/parameter uncertainty using the Soil and Water Assessment Tool model. In the experiments, the number of observations was increased by expanding the calibration period or by including measurements made at inner points of a watershed. Similarly, additional calibration parameters were included in the order of their sensitivity. Then, unique sets of parameters were calibrated with the same objective function, optimization algorithm, and stopping criteria but different numbers of observations. The calibration quality was quantified with statistics calculated based on the ‘behavioural’ parameter sets, identified using 1% and 5% cut‐off thresholds in a generalized likelihood uncertainty estimation framework. The study demonstrated that equifinality, model performance, and output/parameter uncertainty were responsive to the numbers of observations and calibration parameters; however, the relationship between the numbers, equifinality, and uncertainty was not always conclusive. Model performance improved with increased numbers of calibration parameters and observations, and substantial equifinality did neither necessarily mean bad model performance nor large uncertainty in the model outputs and parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Spatial patterns of rainfall are known to cause differences in observed flow. In this paper, the effects of perturbations in rainfall patterns on changes in parameter sets as well as model output are explored using the hydrological model Dynamic TOPMODEL for the Brue catchment (135 km2) in southwest England. Overall rainfall amount remains the same at each time step so the perturbations act as effectively treated errors in the spatial pattern. The errors were analysed with particular emphasis on when they could be detected under an uncertainty framework. Higher rainfall perturbations (multipliers of × 4 and greater) in the low lying and high areas of the catchment resulted in changes to event peaks and accompanying compensation in the baseflow. More significantly, changes in the effective model parameter values required by the best models to take account of the more extreme patterns were able to be detected by noting when distributions of parameters change under uncertainty. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

The extreme value type III distribution was derived by using the principle of maximum entropy. The derivation required only two constraints to be determined from data, and yielded a procedure for estimation of distribution parameters. This method of parameter estimation was comparable to the methods of moments (MOM) and maximum likelihood estimation (MLE) for the low flow data used.  相似文献   

15.
This paper aims to investigate the uncertainty in simulated extreme low and high flows originating from hydrological model structure and parameters. To this end, three different rainfall-runoff models, namely GR4J, HBV and Xinanjiang, are applied to two subbasins of Qiantang River basin, eastern China. The Generalised Likelihood Uncertainty Estimation approach is used for estimating the uncertainty of the three models due to parameter values, henceforth referred as parameter uncertainty. Uncertainty in simulated extreme flows is evaluated by means of the annual maximum discharge and mean annual 7-day minimum discharge. The results show that although the models have good performance for the daily flows, the uncertainty in the extreme flows could not be neglected. The uncertainty originating from parameters is larger than uncertainty due to model structure. The parameter uncertainty of the extreme flows increases with the observed discharge. The parameter uncertainty in both the extreme high flows and the extreme low flows is the largest for the HBV model and the smallest for the Xinanjiang model. It is noted that the extreme low flows are mostly underestimated by all models with optimum parameter sets for both subbasins. The largest underestimation is from Xinanjiang model. Therefore it is not reliable enough to use only one set of the parameters to make the prediction and carrying out the uncertainty study in the extreme discharge simulation could give an overall picture for the planners.  相似文献   

16.
The attenuation of compressional and shear waves ( Q p and Q s) has been studied by several authors but most of these investigations were performed on deep buried reservoir sandstones in order to distinguish between gas and condensate reservoirs and water-saturated sandstones. We present a preliminary investigation into the use of seismic wave attenuation as a measure of the geotechnical parameters of the near-surface marine sediments, a little-studied geological setting. A 6.9 m-long gravity core was taken from the continental slope of the Barents Sea at a water depth of 2227 m. The core was primarily composed of brown to olive-grey clayey mud, having a high content of foraminifers and being locally bioturbated. The values of Q p and Q s were determined using the rise-time method at 19 and 18 different points of the core, respectively, and they were correlated with geotechnical parameters such as wet bulk density, porosity, water content, shear strength and C/P ratio (the ratio of shear strength to overburden pressure). The calculated correlation coefficients for all correlations ranged from −0.39 to 0.41, suggesting that the attenuation characteristics of seismic waves could not be used to derive geotechnical parameters of marine sediments. However, with such a small data set it is difficult to determine clearly whether attenuation is primarily a frequency-dependent parameter and consequently not related to sediment properties, or whether the limited number of data points is the main factor responsible for the low correlation coefficients observed. Moreover, several different methods are available for the computation of the quality factor Q , and the rise-time method may not be the most appropriate means of determining the attenuation on near-surface marine sediments.  相似文献   

17.
A brief history of the development of the inverse problem in resistivity sounding is presented with the development of the equations governing the least-squares inverse. Five algorithms for finding the minimum of the least-square problem are described and their speed of convergence is compared on data from two planar earth models. Of the five algorithms studied, the ridge-regression algorithm required the fewest numbers of forward problem evaluations to reach a desired minimum. Solution space statistics, including (1) parameter-standard errors, (2) parameter correlation coefficients, (3) model parameter eigenvectors, and (4) data eigenvectors are discussed. The type of weighting applied to the data affects these statistical parameters. Weighting the data by taking log10 of the observed and calculated values is comparable to weighting by the inverse of a constant data error. The most reliable parameter standard errors are obtained by weighting by the inverse of observed data errors. All other solution statistics, such as dataparameter eigenvector pairs, have more physical significance when inverse data error weighting is used.  相似文献   

18.
A Monte Carlo-based approach to assess uncertainty in recharge areas shows that incorporation of atmospheric tracer observations (in this case, tritium concentration) and prior information on model parameters leads to more precise predictions of recharge areas. Variance-covariance matrices, from model calibration and calculation of sensitivities, were used to generate parameter sets that account for parameter correlation and uncertainty. Constraining parameter sets to those that met acceptance criteria, which included a standard error criterion, did not appear to bias model results. Although the addition of atmospheric tracer observations and prior information produced similar changes in the extent of predicted recharge areas, prior information had the effect of increasing probabilities within the recharge area to a greater extent than atmospheric tracer observations. Uncertainty in the recharge area propagates into predictions that directly affect water quality, such as land cover in the recharge area associated with a well and the residence time associated with the well. Assessments of well vulnerability that depend on these factors should include an assessment of model parameter uncertainty. A formal simulation of parameter uncertainty can be used to delineate probabilistic recharge areas, and the results can be expressed in ways that can be useful to water-resource managers. Although no one model is the correct model, the results of multiple models can be evaluated in terms of the decision being made and the probability of a given outcome from each model.  相似文献   

19.
Pump‐and‐treat systems can prevent the migration of groundwater contaminants and candidate systems are typically evaluated with groundwater models. Such models should be rigorously assessed to determine predictive capabilities and numerous tools and techniques for model assessment are available. While various assessment methodologies (e.g., model calibration, uncertainty analysis, and Bayesian inference) are well‐established for groundwater modeling, this paper calls attention to an alternative assessment technique known as screening‐level sensitivity analysis (SLSA). SLSA can quickly quantify first‐order (i.e., main effects) measures of parameter influence in connection with various model outputs. Subsequent comparisons of parameter influence with respect to calibration vs. prediction outputs can suggest gaps in model structure and/or data. Thus, while SLSA has received little attention in the context of groundwater modeling and remedial system design, it can nonetheless serve as a useful and computationally efficient tool for preliminary model assessment. To illustrate the use of SLSA in the context of designing groundwater remediation systems, four SLSA techniques were applied to a hypothetical, yet realistic, pump‐and‐treat case study to determine the relative influence of six hydraulic conductivity parameters. Considered methods were: Taguchi design‐of‐experiments (TDOE); Monte Carlo statistical independence (MCSI) tests; average composite scaled sensitivities (ACSS); and elementary effects sensitivity analysis (EESA). In terms of performance, the various methods identified the same parameters as being the most influential for a given simulation output. Furthermore, results indicate that the background hydraulic conductivity is important for predicting system performance, but calibration outputs are insensitive to this parameter (KBK). The observed insensitivity is attributed to a nonphysical specified‐head boundary condition used in the model formulation which effectively “staples” head values located within the conductivity zone. Thus, potential strategies for improving model predictive capabilities include additional data collection targeting the KBK parameter and/or revision of model structure to reduce the influence of the specified head boundary.  相似文献   

20.
Some previous global and regional studies have indicated teleconnection between the extreme phases of the Southern Oscillation (SO) and Turkish climate and hydrologic variables; however, they failed to suggest a strong correlation structure. In this study, categorised Southern Oscillation index (SOI) and Multivariate ENSO (El Nino Southern Oscillation) index (MEI) series were used to examine the far‐reaching effects of the SO on temperature, precipitation and streamflow patterns in Turkey. These SO indicators were categorised into five subgroups according to their empirical distributions. Correlations between the categorised SO indicators and three analysis variables were computed using the Spearman's rho from lag‐0 to lag‐4. Significance of calculated correlations was tested at the 0·01 level for station‐based analysis and at the 0·05 level for regional analysis. Temperature records demonstrated significant correlations with the categorised SOI and MEI in nearly half of the entire stations. For some categories, precipitation and streamflow were found to be correlated with the SO indicators in some stations mainly in western Turkey. Regional analyses of temperature and precipitation revealed a clear and strong correlation structure with the categorised SO indicators on a large portion of Turkey. This was not concluded by the earlier pertinent studies. Besides, this study showed that significant correlations were obtained not only for the SO extreme phases (namely, El Nino and La Nina) but also for neutral and moderate phases of the SO. Plausible explanations for the observed teleconnection are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号