首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT

Accurate assessment of stage–discharge relationships in open channel flows is important to the design and management of hydraulic structures and engineering. Flow junctions commonly occur at the confluence of natural rivers or streams. The effect of flow junctions on the stage–discharge relationship at mountain river confluences was found by measuring velocity fields and water levels in experimental models. The results show that the backwater and accumulation–separation at flow junctions affect the flow structures and patterns in the channel; also, flow confluences may induce complex flow characteristics of backwater and flow separation at river junctions, indicating potential submerged flooding disasters within the confluence zone. The impacts of flow junctions on the stage–discharge relationship are investigated for two physical confluence models built from river confluence prototype systems in southwest China. The results show that the presence of tributary river inflows tends to increase the water level of the main river. This is important for flood control, flood-risk evaluation and engineering (e.g. hydropower station construction) in mountain rivers. Finally, a comparative quantitative analysis based on flow motion equations is conducted to evaluate the stage–discharge relationship in both uniform and regular confluence systems. The results indicate that more accurate prediction can be made when taking into account the flow non-uniformity induced by flow separation, backwater and distorted bed in the junction region.  相似文献   

2.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A field survey of thirty stream junctions from a small watershed, together with data collected by Miller (1958), allowed us to investigate morphometric adjustments occurring at confluences. The model proposed by Roy and Woldenberg (1986) was slightly modified and used as a tool for morphometric analysis. Two parameters are necessary in order to evaluate the rate of change in channel size at a confluence: the area ratio (channel capacity above the confluence: channel capacity below the confluence) and the discharge ratio (discharge of the minor tributary: discharge of the major tributary). Our data show that total channel capacity tends to decline below most confluences. A reduction in cross-sectional area implies an increase in average flow velocity. This interpretation is consistent with Lyell's observations and with results from recent flume experiments (Best and Reid, 1984).  相似文献   

5.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The Pleistocene glaciations left a distinct topographic footprint in mountain ranges worldwide. The geometric signature of glacial topography has been quantified in various ways, but the temporal development of landscape metrics has not been traced in a landscape evolution model so far. However, such information is needed to interpret the degree of glacial imprint in terms of the integrated signal of temporal and spatial variations in erosion as a function of glacial occupation time. We apply a surface process model for cold-climate conditions to an initially fluvial mountain range. By exploring evolving topographic patterns in model time series, we determine locations where topographic changes reach a maximum and where the initial landscape persists. The signal of glacial erosion, expressed by the overdeepening of valleys and the steepening of valley flanks, develops first at the glacier front and migrates upstream with ongoing glacial erosion. This leads to an increase of mean channel slope and its variance. Above steep flanks and head-walls, however, the observed mean channel slope remains similar to the mean channel slope of the initial fluvial topography. This leads to a characteristic turning point in the channel slope–elevation distribution above the equilibrium line altitude, where a transition from increasing to decreasing channel slope with elevation occurs. We identify this turning point and a high channel slope variance as diagnostic features to quantify glacial imprint. Such features are abundant in glacially imprinted mid-latitude mountain ranges such as the Eastern Alps. By analysing differently glaciated parts of the mountain range, we observe a decreasing clarity of this diagnostic morphometric property with decreasing glacial occupation. However, catchments of the unglaciated eastern fringe of the Alps also feature turning points in their channel slope–elevation distributions, but in contrast to the glaciated domain, the variance of channel slope is small at all elevation levels.  相似文献   

7.
This paper is a discussion of Rhoads and Kenworthy (1998) ‘Time-averaged flow structure in the central region of a stream confluence’ Earth Surface Processes and Landforms, 23 , 171–191, that focuses upon the methods used to identify secondary circulation in river channel confluences. It argues that the Rozovskii method that Rhoads and Kenworthy use to rotate their field data to allow identification of secondary circulation cells is flawed, and can result in misleading conclusions about the nature of flow processes in confluences. It recommends that there is a re-emphasis upon helical as opposed to secondary circulation, and that recent developments in both field monitoring and numerical modelling may help significantly in this respect. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The present study explores the evolutionary trajectory of the glacier-fed Mareit River (South Tyrol, Italian Alps), where a large restoration programme was implemented in 2008–2009. River corridor changes before and after the restoration works were assessed using historical maps, recent field observations, topographic surveys and topographic differencing. Trends of anthropic (forest cover, channel works, gravel mining) and natural (glacial cover, precipitation, flow regime) factors controlling channel morphology – at both catchment and reach scales – were reconstructed. From the mid-19th century, the evolutionary trajectory of the Mareit River followed a degradational trend, characterized by channel narrowing, bed incision and planform simplification. Direct, in-channel human alterations – mainly in the form of bank protections (in the late 19th century), gravel mining (mostly in the 1970s) and grade-control works (since the 1980s) – dominated the historical adjustments before the restoration. In 2008–2009, a segment of the Mareit was restored by widening the channel, partly removing the check-dams and shaping a braided pattern within a laterally constrained corridor. Post-work monitoring shows that the restoration improved both the morphological quality and the geomorphic diversity. At present, the channel is subject to narrowing and slight bed level incision, with islands and floodplains progressively expanding at the expenses of the active channel. This trend is likely to continue in the next decades based on the expected future flow regime, and indeed the Mareit River seems to be attaining a ‘miniaturized’ version of the anabranching pattern of the mid-19th century. Overall, this restoration approach and the associated evolutionary trajectory is considered positive, because it leads to a complex mosaic of geomorphic units, dynamically self-adjusting to the time-varying driving variables. The formation of a morphodynamically active corridor, while keeping artificially non-erodible boundaries, represents an optimal strategy to integrate ecological improvements with flood risk mitigation in the densely populated Alpine valleys. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
Channel meander dynamics in fluvial systems and many tidal systems result from erosion of concave banks coupled with sediment deposition on convex bars. However, geographic information system (GIS) analysis of historical aerial photographs of the Skagit Delta marshes provides examples of an alternative meander forming process in a rapidly prograding river delta: deposition‐dominated tidal channel meander formation through a developmental sequence beginning with sandbar formation at the confluence of a blind tidal channel and delta distributary, proceeding to sandbar colonization and stabilization by marsh vegetation to form a marsh island opposite the blind tidal channel outlet, followed by narrowing of the gap between the island and mainland marsh, closure of one half of the gap to join the marsh island to the mainland, and formation of an approximately right‐angle blind tidal channel meander bend in the remaining half of the gap. Topographic signatures analogous to fluvial meander scroll bars accompany these planform changes. Parallel sequences of marsh ridges and swales indicate locations of historical distributary shoreline levees adjacent to filled former island/mainland gaps. Additionally, the location of marsh islands within delta distributaries is not random; islands are disproportionately associated with blind tidal channel/distributary confluences. Furthermore, blind tidal channel outlet width is positively correlated with the size of the marsh island that forms at the outlet, and the time until island fusion with mainland marsh. These observations suggest confluence hydrodynamics favor sandbar/marsh island development. The transition from confluence sandbar to tidal channel meander can take as little as 10 years, but more typically occurs over several decades. This depositional blind tidal channel meander formation process is part of a larger scale systemic depositional process of delta progradation that includes distributary elongation, gradient reduction, flow‐switching, shoaling, and narrowing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
River classifications provide useful frameworks to understand complex fluvial landscapes and to manage freshwater ecosystems. Alluvial floodplains for rivers in low‐relief glacially conditioned catchments of southern Ontario (Canada) are classified and tested using a sequence of multivariate statistical analyses. An original dataset of 109 floodplain sites is investigated using k‐means clustering, principal component analysis, and discriminant analysis statistical approaches. Four primary floodplain types are proposed representing basic morphological, stratigraphical, and sedimentological characteristics. Classifications are successfully discriminated by two principal dimensions: (1) stream power‐resistance; and (2) floodplain sedimentology. The latter is most efficiently represented by the availability of alluvial sand, and specifically a new variable defined as floodplain sand equivalent (FSE). Floodplain types are generally consistent with previous river classifications, however the glacial legacy requires refined classifications which account for inherited cobble bed materials and patterns of sand supply. Representing the residual variability of stream power‐resistance correlations, a third explanatory dimension of sediment transport is suggested, and may explain some within‐class variability in channel morphology. Balancing the opposing concepts of fluvial process domains and landform continuums, the potential for transitional floodplain types is also explored. The proposed first‐order alluvial floodplain classifications provide a basis from which to further investigate geomorphological diversity within the context of complex glacial legacy effects in low‐relief settings. Future research to reveal the spatial arrangement and linkages of distinct morphological groups within a regional landscape mosaic is expected to provide insights into patterns of post‐glacial fluvial adjustment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Saltwater intrusion is a serious issue in estuarine deltas all over the world due to rapid urban sprawl and water shortage. Therefore, detecting the major flow paths or locations at risk of saltwater intrusion in estuarine ecosystems is important for mitigating saltwater intrusion. In this paper, we introduce a centrality index, the betweenness centrality (BC), to address this problem. Using the BC as the weighted attribute of the river network, we identify the critical confluences for saltwater intrusion and detect the preferential flow paths for saltwater intrusion through the least‐cost‐path algorithm from a graph theory approach. Moreover, we analyse the responses of the BC values of confluences calculated in the river network to salinity. Our results show that the major flow paths and critical confluences for saltwater intrusion in a deltaic river network can be represented by the least cost paths and the BC values of confluences, respectively. In addition, a significant positive correlation between the BC values of confluences and salinity is determined in the Pearl River Delta. Changes in the salinity can produce significant variation in the BC values of confluences. Therefore, freshwater can be diverted into these major flow paths and critical confluences to improve river network management under saltwater intrusion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
《国际泥沙研究》2020,35(6):609-620
The fluvial geomorphology in tectonically active (particularly rapid uplift) regions often undergoes continuous change. The rapid uplift is coincident with high erosion rates; consequently, incised valleys are formed. Mass flows (for example, avalanches, landslides, and debris flows) in incised valleys can markedly influence fluvial processes and even reshape valley geomorphology. However, these processes and long-term evolution corresponding to mass flows require further clarification. Field campaigns were carried out in the region near the Yigong Tsangpo and Palong Tsangpo Rivers (hereafter the Yigong and Palong Rivers), the two largest tributaries of the lower Yarlung Tsangpo River, to examine the feedback between fluvial processes and mass flows. Remote sensing images from recent decades were used to compare the channel morphology before and after typical mass flows (particularly catastrophic ones). The morphology of the lower Yigong River has evidently been impacted by landslides, while that of the Palong River has mainly been shaped by glacial processes and debris flows. At present, the morphology of the latter consists of alternating sections of gorges and wide valleys, with a staircase-like longitudinal profile. The gorge sections exhibit single and deeply incised channels with a high-gradient channel bed and terraces. In contrast, the wide valley sections consist of lakes, braided or anabranching channels, gentle bed gradients, and thick alluvial deposits. Debris flows occur more frequently in gullies in the reaches of the gorge sections and rarely in gullies along the wide valley sections. The occurrence of mass flow events has resulted in an imbalance of the previous (quasi-)equilibrium in the river morphology; however, this has triggered negative feedback that is driving the transient river morphology to a new state of (quasi-)equilibrium.  相似文献   

14.
A morphometric comparison of valleys has been made for the Ben Ohau Range in the central Southern Alps of New Zealand. The range is undergoing rapid tectonic transport and uplift. The humid north of the range is a glacial trough-and-arête landscape, with a temperate glacial climate. The dry south has rounded divides and plateau remnants dissected by fluvial valleys. Assuming that space–time substitution allows today's spatial valley-form transition to represent evolutionary stages in valley development, the tectonic history allows time constraints to be placed on the rate of transition to an alpine glacial landscape. Morphometric change has been quantified using hypsometric curves, and distance–elevation plots of cirque and valley-floor altitudes. Ancestral fluvial valleys have less concave long profiles but are stepped at altitude owing to the presence of high-level cirques and remnant plateau surfaces, and possess a low proportion of land area at low elevation. Increasing glacial influence is manifest as smoother, more deeply concave long profiles and U-shaped cross-profiles associated with a higher proportion of the land area at lower elevation. The full morphological transition has involved up to 2.4 km of vertical denudation over the 4 Ma lifetime of the mountain range, of which 80 per cent would have occurred by preglacial fluvial erosion. Combining the trajectory of tectonic transport with reconstructed glaciation limits and climatic history, it is indicated that about 200 ka of temperate glacial erosion produces recognizable trough-and areête topography. Mean and modal relief increase where glacial activity is confined to cirques, but decrease when trough incision by ice becomes established as a dominant process in the landscape. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge of locomotion of fish near river confluences is important for prediction of fish distribution in a river network.The flow separation zone near the confluence of a river network is a favorite habitat and feeding place for silver carp,which is one of the four major species of Chinese carp and usually provides positive rheotaxis to water flow.In the current study,a series of laboratory experiments were done to determine the behavioral responses of juvenile silver carp to the hydrodynamic ...  相似文献   

16.
Effective river management strategies require an understanding of how fluvial processes vary both spatially and temporally. Here, we examine the natural range of variability in the Conejos River Valley, southern Colorado, through documentation of terrace morphostratigraphic and sedimentological characteristics as well as through investigation of sediment contributions from headwaters, hillslopes and tributary streams. Additionally, soil development and radiocarbon ages, together with local and regional paleoclimate reconstructions, were used to infer the range of processes acting in this system. Since de‐glaciation, the Conejos River has fluctuated between episodes of bedrock strath formation, aggradation and vertical incision. Morphostratigraphic relationships, soil development and radiocarbon ages enable us to propose a chronology for periods of alluvial deposition (around 8·9–7·6 ka, 5·5 ka and from 3·5 to 1·1 ka), separated by intervals of fluvial incision. We infer potential forcing mechanisms by utilizing multiple working hypotheses. Specifically, we discuss the potential for increases in sediment supply during periods of (1) para‐glacial adjustment, (2) climatic cooling, (3) increased frequency of climate change and (4) increased fire frequency or severity. We also consider the effects of changes in stream discharge and extreme storm occurrence. We conclude that combinations of these processes, operating at different times, have contributed to sediment mobilization since de‐glaciation. Stream and landform morphology also varies longitudinally due to the influence of remnant glacial topography. In particular, valley bottom overdeepening at tributary junctions has resulted in incision and strath formation into unlithified glacial deposits (i.e. fill‐cut terraces) rather than bedrock in some reaches. Overall, the Conejos fluvial system has varied significantly both temporally and spatially since de‐glaciation and appears to be sensitive to changes in sediment supply related to Holocene scale climate fluctuations. This natural range of variability must therefore be a key consideration in any future stream management policies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
l INTRODUCTIONT'he landscaPe is mainly shaPed by surface runoff of water through erosion and sedimentahon. mverflows cut the bed, scour the banks and silt the seas. All these are realized by moving sediment frOm oneplace to other places. The caPacity of the flow to remove sediment frOm one place to other places within ariver chanel is called sediment-removing caPacity. It differs frOm the well-defined sediment-capingcapacity For instance, steady flow carries sediment through the river …  相似文献   

19.
It has been proposed that most cirques are source-area depressions of large, deep-seated rock-slope failures. Yet the close relation between cirques and climate is convincing evidence of the dominance of glacial erosion, rather than rock-slope failure, in mountain cirque development and distribution. Cirque floor altitudes have a lower limit that varies with snowfall by 1000 m or more between windward and leeward sides of mountain systems. Glaciation levels and equilibrium line altitudes implied by cirques vary in parallel with those for modern glaciers. Cirques are often found mainly on the poleward or leeward slopes of individual mountain ranges, as are modern small glaciers (because of solar radiation and wind effects on ablation and accumulation). Most rock-slope failures (RSFs: rock slides, rock avalanches and gravitational deformations) do not involve the deep-seated rotational movement that would produce a cirque form. Although some deep-seated RSFs with arcuate head scars may be confused with cirques, identification as a glacial cirque is more confident as the floor is longer, wider and more gently sloping. Some scars from major RSFs may resemble poor or moderately developed cirques, but tend to have steeper floors, to be more scattered and closely related to geology, whereas glacial cirques develop on all rock types. Deep-seated RSFs high on slopes can be associated with seismic shaking, but cirques develop without relation to seismicity. Degree of cirque development can be related to duration of exposure to glaciation. Often RSFs are found adjacent to cirques, or in glacial transfluences; only a proportion are well situated to develop into glacial cirques. Valley-head cirques are continued down-valley by glacial troughs. The ‘overdeepening’ (rock basins with reversed slopes) found in a large minority of cirques is not due to rock avalanching, fluvial or periglacial erosion. The RSF proposal should therefore be rejected in favour of the traditional glacial explanation, without any nivation stage being necessary. Rock-slope failure is one of several possible ways of initiating hollows for glacier accumulation, as well as an ancillary process of cirque extension or widening through collapse of glacially oversteepened slopes. Headward extension of adjacent cirques on a ridge leads to displacement of the divide, sometimes by 2 km or more, lowering ridge and summit altitudes and producing the ‘glacial buzzsaw’ effect. Where a relatively lower snowline has led to cirque erosion on all sides of a mountain, cirque intersection lowers summits further. The buzzsaw hypothesis is not applicable, however, where remnants of a preglacial summit surface survive. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Delineating alluvial aquifer heterogeneity using resistivity and GPR data   总被引:6,自引:0,他引:6  
Conceptual geological models based on geophysical data can elucidate aquifer architecture and heterogeneity at meter and smaller scales, which can lead to better predictions of preferential flow pathways. The macrodispersion experiment (MADE) site, with >2000 measurements of hydraulic conductivity obtained and three tracer tests conducted, serves as an ideal natural laboratory for examining relationships between subsurface flow characteristics and geophysical attributes in fluvial aquifers. The spatial variation of hydraulic conductivity measurements indicates a large degree of site heterogeneity. To evaluate the usefulness of geophysical methods for better delineating fluvial aquifer heterogeneities and distribution of preferential flow paths, a surface grid of two-dimensional ground penetrating radar (GPR) and direct current (DC) resistivity data were collected. A geological model was developed from these data that delineate four stratigraphic units with distinct electrical and radar properties including (from top to bottom) (1) a meandering fluvial system (MFS); (2) a braided fluvial system (BFS); (3) fine-grained sands; and (4) a clay-rich interval. A paleochannel, inferred by other authors to affect flow, was mapped in the MFS with both DC resistivity and GPR data. The channel is 2 to 4 m deep and, based on resistivity values, is predominantly filled with clay and silt. Comparing previously collected hydraulic conductivity measurements and tracer-plume migration patterns to the geological model indicates that flow primarily occurs in the BFS and that the channel mapped in the MFS has no influence on plume migration patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号