首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strength equilibrium slopes are rock slopes whose gradient θ and rock mass strength (RMS) are in adjustment. The identification of such slopes depends on the accurate specification of the strength equilibrium envelope. Previous attempts to delimit the envelope are reviewed and modifications are proposed that permit its more rigorous statistical definition. Because θ can be measured much more reliably than RMS, the structural relation between these variables is estimated by regressing RMS on θ, and the strength equilibrium envelope is defined by the 95 per cent confidence limits. The analysis is performed on a data set of 268 rock slopes, representing all the data on RMS and θ hitherto employed in published studies of strength equilibrium slopes.  相似文献   

2.
A rock mass strength classification, involving eight parameters, has been applied to selected inselbergs in the Namib Desert. The inselbergs are formed of schists, gneiss, granite and marble. Their slope inclinations are in a strength equilibrium with their rocks. The study suggests that the strength classification is consistent and has a general validity, and that rock slopes, undergoing uniform weathering, retreat to form slopes which are adjusted to their rock mass strength: this is a more general statement than the common hypothesis of parallel retreat. The favoured hypothesis of slope evolution in the Namib is one of retreat rather than downwearing.  相似文献   

3.
Rock material strength is an important component of many geomorphological studies. Current methods for determining this parameter result in sample destruction, preventing further analysis. A new non-destructive technique is described for indirectly determining material strength, by measuring Dynamic Young's Modulus. Tests have been conducted on Jurassic Portland Limestone and Upper Cretaceous Chalk to assess the apparatus. Young's Modulus is becoming an increasingly important rock material property.  相似文献   

4.
Material strength is an important variable for any study of the relationships between rock mass geomechanical characteristics and landform development. Standard field and laboratory tests for measuring strength present a variety of problems to the geomorphologist. Recent studies (Allison, 1988) have described a laboratory based non-destructive method for indirectly determining material strength, by measuring Dynamic Young's Modulus. Data presented here suggest that the same apparatus can be used as a field technique. Tests have been conducted on the Devonian limestone of the Napier Range, Western Australia. Laboratory results obtained using the non-destructive ultrasonic apparatus have a high correlation with triaxial Hoek Cell tests. Results from on-site tests have much greater accuracy than data collected using the Schmidt hammer, which is currently the most widely used geomorphological field technique for determining rock strength.  相似文献   

5.
In identifying controls on rock slope form a distinction is made between: (1) rock slopes with joints which dip steeply out of a cliff and hence are subject to mass failure of the rock mass above a critical joint; and (2) rock slopes with inclinations which are either in equilibrium with the mass strength of their rocks, or have profiles which will develop towards strength equilibrium as cross joints open. In the first class of slope, stability results not just from the basic frictional resistance of the rock but also from the frictional roughness along the critical joint and from the normal stress acting across that joint. Stability may be reduced by weathering and loss of strength of the joint wall rock. As a result of normal stress variations with depth, induced by overburdens, high cliffs which are not undercut have a concave profile. The second group of slopes includes those with inclinations controlled at the scale of individual joint blocks, buttressed slopes and those on unjointed rock masses. Buttressed and unjointed rock masses develop towards a condition of mass strength equilibrium as cross joints open. Strength equilibrium slopes may be recognized by application of a rock mass strength classification proposed for geomorphic purposes. Eleven propositions are formulated which identify controls on rock slope development and some consequences of these controls.  相似文献   

6.
In a previous publication (Allison, 1989), a non-destructive method for indirectly determining rock strength by measuring Dynamic Young's Modulus was described. Data were presented to assess the Grindosonic apparatus in relation to standard laboratory techniques. A further Short Communication (Allison, 1990) evaluated the non-destructive test as a field technique, in part achieved by comparing the Grindosonic results with data collected using the Schmidt hammer. The Schmidt hammer is a widely used field technique in geomorphology for determining rock strength (see for example Day and Goudie, 1977; Day, 1981). Allison (1989, 1990) also suggested that the elastic properties of materials are becoming increasingly important in geomorphological studies. The opportunity to provide additional information and comments here is appreciated.  相似文献   

7.
In Developments in a non-destructive method of determining rock strength, Allison (1990) compares data collected using an ultrasonic apparatus with data obtained from Schmidt hammer tests. He concludes that the Schmidt hammer data shows a wide degree of scatter and that its accuracy as field technique is questionable. No discussion is made of how the Schmidt hammer was used or of the total number of readings taken and the range of values. The graphs presented comparing data derived from some samples using ultrasonic equipment do not appear markedly at variance from the Schmidt hammer-derived data but true comparison is not possible because the graphs use different measurement criteria. No information is given on comparative time and financial costs, which must be significantly different for the two techniques.  相似文献   

8.
The erosional morphology in the vicinity of the Main Divide of the Southern Alps, and Fiordland, New Zealand, appears to be a product of the interaction between Alpine Fault-induced tectonic processes, rock mass strength of the uplifted and eroded bedrock, and the processes acting to denude the developing mountain landscape. The magnitude of the effects of glacial erosion on the landscape is directly controlled by the size and physical properties of the glaciers, whilst the form of the trough is a direct consequence of the rock mass strength (RMS) properties of the slope rock. Realistic models of development of the cross-profile shape of glacial valleys must take into consideration the RMS properties of the eroded substrate.  相似文献   

9.
Influence of rock mass strength on the erosion rate of alpine cliffs   总被引:1,自引:0,他引:1  
Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
高放废物地质处置库选址要求围岩完整稳定,它与岩体深部地质结构密切相关,因此是场址评价中必须考虑的因素.在高放废物储库选址新区内蒙阿拉善塔木素岩体,采用可控源音频大地电磁法进行了剖面探测.分析了典型测深曲线,区分了地质构造和完整围岩的响应特征;针对高放废物预选场址的特点,对原始数据进行了处理;结合已有地质、钻井及测井资料完成了解释;结果表明,利用可控源音频大地电磁法有效地查明了该地岩体内部结构,该岩体存在裂隙和破碎,完整性欠佳.  相似文献   

11.
Quantitative estimation of the material transported by the wind under field conditions is essential for the study and control of wind erosion. A critical step of this calculation is the integration of the curve that relates the variation of the amount of the material carried by the wind with height. Several mathematical procedures have been proposed for this calculation, but results are scarce and controversial. One objective of this study was to assess the efficiency of three mathematical models (a rational, an exponential, and a simplified Gaussian function) for the calculation of the mass transport, as compared to the linear spline interpolation. Another objective of this study was to compare the mass transport calculated from field measurements obtained from a minimum of three discrete sampling heights with measurements of nine sampling heights. With this purpose, wind erosion was measured under low surface roughness conditions on an Entic Haplustoll during 25 events. The rational function was found to be mathematically limited for the estimation of wind eroded sediment mass flux. The simplified Gaussian model did not fit to the vertical mass flux profile data. Linear spline interpolation generally produced higher mass transport estimates than the exponential equation, and it proved to be a very flexible and robust method. Using different sampling arrangements and different mass flux models can produce differences of more than 45% in mass transport estimates, even under similar field conditions. Under the conditions of this study, at least three points between the soil surface and 1·5 m high, including one point as closest as possible to the surface, should be sampled in order to obtain accurate mass transport estimates. Additionally, the linear spline interpolation and the non‐linear regression using an exponential model, proved to be mathematically reliable methods for calculating the mass transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents a semi-empirical model for quantifying the reduction in the mechanical strength of bedrock beneath actively eroding soil-mantled hillslopes. The strength reduction of bedrock controls the rate of physical disintegration of saprolite, which supplies fresh minerals that are then exposed to intense chemical weathering in soil sections. To determine the values of parameters employed in the model requires knowledge of the denudation rate of the hillslope, the thickness of the soil and saprolite layers, the strength of fresh bedrock, and the threshold strength for physical erosion at the uppermost face of the saprolite. These parameters can be obtained from cosmogenic nuclide analyses for quartz samples from the soil–saprolite boundary and basic field- and laboratory-based investigations. Further testing of the model within a diverse range of climatic, tectonic, and lithologic environments is likely to provide clues to the mechanisms responsible for local and regional variations in the rates of soil production and chemical weathering upon hillslopes.  相似文献   

13.
李博  韩同城  符力耘 《地球物理学报》2020,63(12):4578-4591

了解储层岩石的介电特性在石油工业的各个方面都有重要的应用.小尺度裂隙是影响岩石介电性质的地质因素之一,获得裂隙对含裂隙岩石介电性质影响的定量关系具有重要的理论和实践意义.以含裂隙人造砂岩的三维微观数字结构为基础,通过基于三维有限差分算法计算的岩石介电性质与实验数据的对比验证数值计算方法的有效性.在此基础上,通过理论模型获得不同孔隙度基质的介电性质,并在不含裂隙人造砂岩的三维微观数字结构中人为添加以裂隙密度和纵横比为定量表征参数的裂隙,应用验证后的数值算法模拟随频率变化的含裂隙砂岩的介电性质,分析和研究不同孔隙度基质中定向排列裂隙对砂岩介电性质的影响.结果表明,当裂隙孔隙度随裂隙纵横比或裂隙密度发生改变时,含裂隙砂岩的介电性质与裂隙密度以及裂隙纵横比呈正相关关系,而当裂隙孔隙度保持不变时,含裂隙砂岩的介电性质随裂隙纵横比的减小而增大;裂隙参数的改变对不同基质孔隙度的含裂隙砂岩的介电性质的影响趋势较为一致,但随着基质孔隙度的减小,裂隙对砂岩介电性质的影响逐渐增大.裂隙参数和基质孔隙度对含裂隙砂岩介电性质影响的研究结果为基于介电特性的裂缝性油气储层的定量表征提供了依据,在油气勘探开发中具有重要的应用前景.

  相似文献   

14.
李博  韩同城  符力耘 《地球物理学报》1954,63(12):4578-4591
了解储层岩石的介电特性在石油工业的各个方面都有重要的应用.小尺度裂隙是影响岩石介电性质的地质因素之一,获得裂隙对含裂隙岩石介电性质影响的定量关系具有重要的理论和实践意义.以含裂隙人造砂岩的三维微观数字结构为基础,通过基于三维有限差分算法计算的岩石介电性质与实验数据的对比验证数值计算方法的有效性.在此基础上,通过理论模型获得不同孔隙度基质的介电性质,并在不含裂隙人造砂岩的三维微观数字结构中人为添加以裂隙密度和纵横比为定量表征参数的裂隙,应用验证后的数值算法模拟随频率变化的含裂隙砂岩的介电性质,分析和研究不同孔隙度基质中定向排列裂隙对砂岩介电性质的影响.结果表明,当裂隙孔隙度随裂隙纵横比或裂隙密度发生改变时,含裂隙砂岩的介电性质与裂隙密度以及裂隙纵横比呈正相关关系,而当裂隙孔隙度保持不变时,含裂隙砂岩的介电性质随裂隙纵横比的减小而增大;裂隙参数的改变对不同基质孔隙度的含裂隙砂岩的介电性质的影响趋势较为一致,但随着基质孔隙度的减小,裂隙对砂岩介电性质的影响逐渐增大.裂隙参数和基质孔隙度对含裂隙砂岩介电性质影响的研究结果为基于介电特性的裂缝性油气储层的定量表征提供了依据,在油气勘探开发中具有重要的应用前景.  相似文献   

15.
泥页岩岩石物理建模研究   总被引:7,自引:2,他引:7       下载免费PDF全文
泥页岩由于其复杂的岩石特性(主要是裂缝及有机质的存在),目前还没有有效的岩石物理模型可以较为精确的模拟其性质.本文在自洽模型和微分等效介质模型的基础上,引入Berryman三维孔隙形态及Brown-Korringa固体替代技术,建立适用于富有机质泥页岩的新型岩石物理模型.在此基础上进行正演分析,讨论不同孔隙形态对于自洽模型的临界孔隙度以及岩石速度的影响.正演分析的结果表明即使将未知的混合岩石作为背景岩石,微分有效介质模型的引入使得固体相和流体相仍然不是对称的,临界孔隙度不一定要落在0.4到0.6之间.且不同的孔隙形状对于自洽模型的临界孔隙度以及岩石的速度具有明显的影响.此外,基于岩石物理模型,文章讨论了不同孔隙形态、不同泥质含量时有机质对于岩石弹性性质的影响.最后利用一口页岩气井对该模型进行验证,预测的纵横波速度与测井结果吻合的很好,证明了该模型对于富有机质泥页岩的适用性.  相似文献   

16.
Rapid, field‐based assessments of rock hardness are required in a broad range of geomorphological investigations where rock intact strength is important. Several different methods are now available for taking such measurements, in particular the Schmidt hammer, which has seen increasing use in geomorphology in recent decades. This is despite caution from within the engineering literature regarding choice of Schmidt hammer type, normalization of rebound (R‐) values, surface micro‐roughness, weathering degree and moisture content, and data reduction/analysis procedures. We present a pilot study of the use of an Acoustic Energy Meter (AEM), originally produced, tested and developed within the field of underground mining engineering as a rapid measure of rock surface hardness, and compare it with results from a mechanical N‐Type Schmidt hammer. We assess its capabilities across six lithological study sites in southeast Queensland, Australia, in the Greater Brisbane area. Each rock exposure has been recently exposed in the 20th/21st century. Using a ‘paired’ sampling approach, the AEM G‐value shows an inverse relationship with Schmidt hammer R‐value. While both devices show variability with lithology, the AEM G‐values show less scatter than the Schmidt hammer. We conclude that each device can contribute to useful rock hardness testing in geomorphological research, but the AEM requires further field testing in a range of environments, and in particular on older and naturally‐exposed rock surfaces. Future evaluations can extend this pilot study by focusing on sampling procedures, energy sources, and data reduction protocols, within the framework of a comparison study with other rock hardness testing apparatus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
两种强度折减法确定边坡稳定系数适用性探讨   总被引:1,自引:0,他引:1  
强度折减法确定边坡稳定性系数比传统极限平衡方法优势明显,但是两种常用的强度折减法哪种更适合一直存在争议。本文针对某工程算例分别采用两种强度折减法进行了边坡稳定性系数计算,并把计算结果和传统极限平衡方法进行了对比,结果表明快速拉格朗日分析法更适合应用在边坡稳定性系数确定方面。该法的计算结果和传统计算方法极其接近,并可以克服传统方法人为指定滑动面的重大缺点。  相似文献   

18.
Evaluation of shear strength of rock joints subjected to cyclic loading   总被引:7,自引:0,他引:7  
Variation of the shear strength of rock joints due to cyclic loadings is studied in the present paper. Identical joint surfaces were prepared using a developed moulding method with special mortar and shear tests were performed on these samples under both static and cyclic loading conditions. Different levels of shear displacement were applied on the samples to study joint behaviour before and during considerable relative shear displacement. It was found that the shear strength of joints is related to rate of displacement (shearing velocity), number of loading cycles and stress amplitude. Finally, based on the experimental results, mathematical models were developed for evaluation of shear strength in cyclic loading conditions.  相似文献   

19.

提出了各向异性页岩储层统计岩石物理反演方法.通过统计岩石物理模型建立储层物性参数与弹性参数的定量关系,使用测井数据及井中岩石物理反演结果作为先验信息,将地震阻抗数据定量解释为储层物性参数、各向异性参数的空间分布.反演过程在贝叶斯框架下求得储层参数的后验概率密度函数,并从中得到参数的最优估计值及其不确定性的定量描述.在此过程中综合考虑了岩石物理模型对复杂地下介质的描述偏差和地震数据中噪声对反演不确定性的影响.在求取最大后验概率过程中使用模拟退火优化粒子群算法以提高收敛速度和计算准确性.将统计岩石物理技术应用于龙马溪组页岩气储层,得到储层泥质含量、压实指数、孔隙度、裂缝密度等物性,以及各向异性参数的空间分布及相应的不确定性估计,为页岩气储层的定量描述提供依据.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号