首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper considers a solution method for viscously damped linear structural systems which are subjected to transient loading. The equations of motion of such systems are written in a first-order form. A solution subspace is generated using the damped dynamic matrix and the static deflection from the first-order form of the equations of motion. Two convenient bases, Lanczos vectors and Ritz vectors, are constructed from this subspace. An approximate solution is then obtained by superposition of the Lanczos vectors or the Ritz vectors. In contrast to the traditional mode superposition method using complex eigenvectors, the Lanczos vectors or the Ritz vectors are less expensive to generate than the complex eigenvectors, yet yield comparable accuracy. In addition, there is no need for a static correction since the static deflection is already contained in our solution subspace. Numerical examples are presented to show the potential of using the Ritz vectors to compute responses of damped dynamic systems.  相似文献   

2.
In order to reduce the size of problems involving analysis of the dynamic response of structural systems, a transformatio based on appropriately selected Ritz shapes is commonly employed. The lower mode shapes may at times serve a effective Ritz shapes. However, the computation of mode shapes is a time consuming task; in addition, the mode shapes may not form the best basis for representing the spatial distribution of loads. The recently developed load dependent vectors, which are derived from a static solution for the applied loads, address some of the problems inherent in the use of mode shapes. However, both the natural mode shapes and the load dependent vectors fail to account for the frequency content of the loading, a parameter that may influence strongly the response, particularly for loading with a high frequency content. A procedure is presented here for the generation of frequency dependent vectors. A combination of load dependent and frequency dependent vectors will often form a very efficient basis for the representation of the response, as illustrated by several examples presented here.  相似文献   

3.
An efficient numerical algorithm is developed to solve the quadratic eigenvalue problems arising in the dynamic analysis of damped structural systems. The algorithm can even be applied to structural systems with non-symmetric matrices. The algorithm is based on the use of Arnoldi's method to generate a Krylov subspace of trial vectors, which is then used to reduce a large eigenvalue problem to a much smaller one. The reduced eigenvalue problem is solved and the solutions are used to construct approximate solutions to the original large system. In the process, the algorithm takes full advantage of the sparseness and symmetry of the system matrices and requires no complex arithmetic, therefore, making it very economical for use in solving large problems. The numerical results from test examples are presented to demonstrate that a large fraction of the approximate solutions calculated are very accurate, indicating that the algorithm is highly effective for extracting a number of vibration modes for a large dynamic system, whether it is lightly or heavily damped.  相似文献   

4.
The solution of the eigenvalue problem for large structures is often the most costly phase of a dynamic response analysis. In this paper, the need for the exact solution of this large eigenvalue problem is eliminated. A new algorithm, based on error minimization, is presented for the generation of a sequence of Ritz vectors. These orthogonal vectors are used to reduce the size of the system. Only Ritz vectors with a large participation factor are used in the subsequent mode superposition analysis. In all examples studied, the superposition of Ritz vectors yields more accurate results, with fewer vectors, than if the exact eigenvectors are used. The proposed method not only reduces computer time requirements significantly but provides an error estimation for the dynamic analysis. The approach automatically includes the advantages of the proven numerical techniques of static condensation, Guyan reduction and static correction due to higher mode truncation.  相似文献   

5.
Real and complex Ritz vector bases for dynamic analysis of large linear systems with non-proportional damping are presented and compared. Both vector bases are generated utilizing load dependent vector algorithms that employ recurrence equations analogous to the Lanczos algorithm. The choice of static response to fixed spatial loading distribution, as a starting vector in recurrence equations, is motivated by the static correction concept. Different phases of dynamic response analysis are compared with respect to computational efficiency and accuracy. It is concluded that the real vector basis approach is approximately eight times more efficient than the complex vector basis approach. The complex vector basis has some advantages with respect to accuracy, if the excitation is of piecewise linear form, since the exact solution can be utilized. In addition, it is demonstrated that both Ritz vector bases, real and complex, possess superior accuracy over the adequate eigenvector bases.  相似文献   

6.
An approximate method for linear analysis of asymmetric‐plan, multistorey buildings is specialized for a single‐storey, base‐isolated structure. To find the mode shapes of the torsionally coupled system, the Rayleigh–Ritz procedure is applied using the torsionally uncoupled modes as Ritz vectors. This approach reduces to analysis of two single‐storey systems, each with vibration properties and eccentricities (labelled ‘effective eccentricities’) similar to corresponding properties of the isolation system or the fixed‐base structure. With certain assumptions, the vibration properties of the coupled system can be expressed explicitly in terms of these single‐storey system properties. Three different methods are developed: the first is a direct application of the Rayleigh–Ritz procedure; the second and third use simplifications for the effective eccentricities, assuming a relatively stiff superstructure. The accuracy of these proposed methods and the rigid structure method in determining responses are assessed for a range of system parameters including eccentricity and structure flexibility. For a subset of systems with equal isolation and structural eccentricities, two of the methods are exact and the third is sufficiently accurate; all three are preferred to the rigid structure method. For systems with zero isolation eccentricity, however, all approximate methods considered are inconsistent and should be applied with caution, only to systems with small structural eccentricities or stiff structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Mode superposition is a widely used method for solving the dynamic equilibrium equation in structural dynamic analysis. However, the accuracy of this method may be reduced when the dynamic equilibrium equations are set up using displacement excitation. A new method for developing solutions for dynamic equilibrium equations based on displacement excitation is introduced. The dynamic equilibrium equation is decomposed into two parts, namely displacement excitation and velocity excitation, and precise integration and mode superposition methods are combined to solve the equation. Ritz vectors are then used to calculate the static response of the truncated modes of the structure, and a method for determining the number of participating modes is obtained. Using multi-degree-of-freedom systems as two computational examples, the differences in the structural responses obtained from the displacement excitation and acceleration excitation are compared and analyzed. It is shown that the new solution method generates consistent accuracy between the displacement excitation and acceleration excitation.  相似文献   

8.
In this paper, a solution method is presented to solve the eigenproblem arising in the dynamic analysis of non-proportional damping systems with symmetric matrices. The method is based on the Lanczos method to generate one pair of Krylov subspaces consisting of trial vectors, which is then used to reduce a large eigenvalue problem into a much smaller one. The method retains the n order quadratic eigenproblem, without employing the method of matrix augmentation traditionally used to cast the problem as a linear eigenproblem of order 2n. In this process, the method preserves the sparseness and symmetry of the system matrices and does not invoke complex arithmetic; thus making it very economical for use in solving large problems. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A procedure for deriving the Lanczos vectors is explained and their use in structural dynamics analysis as an alternative to modal co-ordinates is discussed. The vectors are obtained by an inverse iteration procedure in which orthogonality is imposed between the vectors resulting from successive iteration cycles. Using these Lanczos vectors the equations of motion are transformed to tridiagonal form, which provides for a very efficient time-stepping solution. The effectiveness of the method is demonstrated by a numerical example.  相似文献   

10.
A generation procedure of Ritz vectors to control the inclusion of static effect and the number of vectors in mode superposition dynamic analysis is presented. The original algorithm of the Ritz vectors15 is modified to improve stability in the generation procedure and to include the use of static residual. To reject unimportant Ritz vectors, cut-off criteria, which are based on the participation of mass distribution and spatial load distribution, are proposed. Numerical examples are presented to illustrate the effectiveness of the derived Ritz vectors over the eigenvectors and the performance of the cutoff criteria in the mode superposition dynamic analysis.  相似文献   

11.
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.  相似文献   

12.
It can be very time consuming to use the conventional numerical methods, such as the finite element method, to solve convection–dispersion equations, especially for solutions of large-scale, long-term solute transport in porous media. In addition, the conventional methods are subject to artificial diffusion and oscillation when used to solve convection-dominant solute transport problems. In this paper, a hybrid method of Laplace transform and finite element method is developed to solve one- and two-dimensional convection–dispersion equations. The method is semi-analytical in time through Laplace transform. Then the transformed partial differential equations are solved numerically in the Laplace domain using the finite element method. Finally the nodal concentration values are obtained through a numerical inversion of the finite element solution, using a highly accurate inversion algorithm. The proposed method eliminates time steps in the computation and allows using relatively large grid sizes, which increases computation efficiency dramatically. Numerical results of several examples show that the hybrid method is of high efficiency and accuracy, and capable of eliminating numerical diffusion and oscillation effectively.  相似文献   

13.
The problem of free vibration of non-linear structures is considered initially. It is shown that this problem can be represented as a non-linear eigenvalue problem. Variational principles for non-linear eigenvalue problems are defined. These variational principles are implemented with finite element models to define numerical approximations for the free vibration problem. The solution of these approximate equations provides a set of non-linear modal vectors and natural frequencies which vary with the amplitude of the solution. The non-linear eigenvalue parameters can be used in modal expansion approximations for the non-linear transient or steady state response of structural systems. To demonstrate the proposed techniques the free vibration and steady state vibration characteristics of a geometrically non-linear circular plate are determined.  相似文献   

14.
In recent years a number of studies on employing friction elements for the seismic protection of buildings has demonstrated conclusively that such devices can markedly reduce earthquake-induced vibrations. Any numerical estimate of the effectiveness of such isolation systems implies a correct solution of the pertinent nonlinear equations of motion. In direct integration algorithms, the phase transitions between adherence and sliding, or the sliding phase may be accompanied by marked high-frequency oscillation of the relative velocity difference. The paper presents a numerical technique for overcoming these problems, thus leading to increased accuracy of the solutions of equations of motions with Coulomb damping. Since only the damping matrix and the loading vector are involved, the procedure is also computationally efficient. In order to validate the proposed numerical technique, an experimental study of a friction system has been carried out. The dynamic response of a four-storey braced frame with friction devices is presented as an example for the practical application of the proposed numerical technique.  相似文献   

15.
宋刚  谭川  陈果 《地震工程学报》2015,37(4):933-937
对传统的结构抗震闭开环控制算法进行改进。基于地面运动自回归模型,采用Kalman滤波利用可以量测到的地面加速度激励对未来时段即将发生的地面加速度激励进行预估,并在微分方程的求解中引入精确高效的精细积分算法。考虑到实际控制中量测全部状态变量的困难,改进算法仅需量测部分状态变量。数值仿真表明,基于输出反馈的闭开环次优控制策略能大大降低结构的地震响应。  相似文献   

16.
The secret to successful solute-transport modeling   总被引:6,自引:0,他引:6  
Konikow LF 《Ground water》2011,49(2):144-159
  相似文献   

17.
The development of a displacement finite element formulation and its application to convective transport problems is presented. The formulation is based on the introduction of a generalized quantity defined as transport displacement. The governing equation is expressed in terms of this quantity and by using generalized coordinates a variational form of the governing equation is obtained. This equation may be solved by any numerical method, though it is of particular interest for application of the finite element method. Two finite element models are derived for the solution of convection-diffusion boundary value problems. The performance of the two element models is discussed and numerical results are given for different cases of convection and diffusion with two types of boundary conditions. The numerical results obtained show not only the efficiency of the numerical models in handling pure convection, pure diffusion and mixed convection-diffusion problems, but also good stability and accuracy. The applications of the developed numerical models are not limited to diffusion-convection problems but can also be applied to other types of problems such as mass transfer, hydrodynamics and wave propagation.  相似文献   

18.
目前,有关伴随状态法初至波走时层析成像方法的文献,基本上都是基于面积分来定义目标函数,由此得到的伴随方程也都依赖于地表的法向量.这样,一方面会因为伴随变量计算的不准确而造成梯度的不合理,另一方面也无法合理地处理井中观测问题.本文从理论或数值试验角度指出了这些问题,并提出了不依赖地表法向量的改进的伴随状态法走时层析成像方...  相似文献   

19.
The exact analytical solution for the vertical displacement at the center of the surface of an elastic half space under an impulsive loading having the same spatial distribution as the contact stresses arising underneath a smooth, rigid disk when subjected to a static, vertical load, is obtained using Eason's method. The solution can be used to study the dynamical interaction and contact problems between soil and structures and can also be used to assess numerical computations with a finite element or boundary element program.  相似文献   

20.
A fluid-saturated one-layer continuum underlain by a rigid half-space is considered. An exact solution is developed in frequency domain for analyzing disturbance induced by a strip footing located at the surface with vertical harmonic excitation. Since the analytical solution can be used only for very simple conditions, a finite element model has been developed also and compared with the exact solution. It is shown that finite element results are in close agreement with the results which have been obtained by a transformation technique. The proposed finite element scheme can take into account the complex geometry and inhomogeneity for practical problems. Besides this, the analytical results exhibit the overall characteristic of wave propagation in porous media and will provide a representative test problem which can be used for a quantitative evaluation of the accuracy of various numerical solution methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号