首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Using the global chemistry and transport model MOZART,the simulated distributions of tropospheric hydroxyl free radicals(OH) over China and its sensitivities to global emissions of carbon monoxide(CO),nitrogen oxide(NO x),and methane(CH 4) were investigated in this study.Due to various distributions of OH sources and sinks,the concentrations of tropospheric OH in east China are much greater than in west China.The contribution of NO + perhydroxyl radical(HO 2) reaction to OH production in east China is more pronounced than that in west China,and because of the higher reaction activity of non-methane volatile organic compounds(NMVOCs),the contributions to OH loss by NMVOCs exceed those of CO and take the dominant position in summer.The results of the sensitivity runs show a significant increase of tropospheric OH in east China from 1990 to 2000,and the trend continues.The positive effect of double emissions of NO x on OH is partly offset by the contrary effect of increased CO and CH 4 emissions:the double emissions of NO x will cause an increase of OH of 18.1%-30.1%,while the increases of CO and CH 4 will cause a decrease of OH of 12.2%-20.8% and 0.3%-3.0%,respectively.In turn,the lifetimes of CH 4,CO,and NO x will increase by 0.3%-3.1% with regard to double emissions of CH 4,13.9%-26.3% to double emissions of CO and decrease by 15.3%-23.2% to double emissions of NO x.  相似文献   

2.
Eddy correlation measurements of NO vertical flux were made periodically from October 1983 through June 1984 at a height of eight meters above grass in northeastern Illinois, U.S.A. From 207 data points, each representing a 25 min average, 19 daytime cases and 8 nighttime cases were selected on the basis of steady, nonadvective atmospheric conditions. Each case was represented by a set of data constituting a 3 to 5 hr average. Concentrations of O3, NO, and NO y (from which NO2 was inferred) and local atmospheric and surface conditions also were measured, to provide the information necessary to assess the relative importance of surface deposition, surface emission, and air chemistry on the observed NO flux. On the basis of a linear regression analysis applied with independent variables representing physical, chemical, and biological processes, surface uptake of NO was very small for data primarily collected in the daytime during spring, and measured deposition velocities at a height of 8 m were very small, much smaller than expected for NO2. For the same time period, the surface emission rates of elemental nitrogen in NO were in the range of 1.4 to 4.2 ng m-2 s-1 for moist, unsaturated soils at temperatures near 15° C. These emissions were partially masked in the measured fluxes by rapid in-air chemical reactions involving O3 and NO2. The effects of rapid in-air chemical reactions involving O3 were to decrease the (upward) flux of NO with height. While the information collected at night was too limited to strongly support hypotheses concerning emissions and deposition, a pathway for NO production by reactions involving NO3 and related compounds was indicated. For daytime conditions, this production pathway is not evident, probably because of the relatively strong effects of photochemical reactions involving NO, NO2, and O3.Formerly with the Chemical Technology Division of Argonne National Laboratory and currently affiliated with Bio-Rad Laboratories, Digilab Division, Minneapolis, MN, U.S.A.  相似文献   

3.
In this paper we quantify the CH4, CO2 and NO x emissions during routine operations at a major oil and gas production facility, Prudhoe Bay, Alaska, using the concentrations of combustion by products measured at the NOAA-CMDL observatory at Barrow, Alaska and fuel consumption data from Prudhoe Bay. During the 1989 and 1990 measurement campaigns, 10 periods (called events) were unambiguously identified where surface winds carry the Prudhoe Bay emissions to Barrow (approximately 300 km). The events ranged in duration from 8–48 h and bring ambient air masses containing substantially elevated concentrations of CH4, CO2 and NO y to Barrow. Using the slope of the observed CH4 vs CO2 concentrations during the events and the CO2 emissions based on reported fuel consumption data, we calculate annual CH4 emissions of (24+/–8)×103 metric tons from the facility. In a similar manner, the annual NO x emissions are calculated to be (12+/–4)×103 metric tons, which is in agreement with an independently determined value. The calculated CH4 emissions represent the amount released during routine operations including leakage. However this quantity would not include CH4 released during non-routine operations, such as from venting or gas flaring.  相似文献   

4.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

5.
In recent years, China has implemented several measures to improve air quality. The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years. How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future. To evaluate the changes in major air pollutant emissions over this region, this paper employs ens...  相似文献   

6.
Automobile exhaust emissions are becoming increasingly serious with the drastic increase of the number of vehicles in Beijing. In order to investigate the air pollution level and characteristics in the areas near the main traffic lines in Beijing and to identify the contributions from traffic and other sources, gaseous pollutants including NOx, CO, O3, SO2, and meteorological parameters have been monitored at a monitoring site and a contrasting site in winter and summer in 2006. The volumes of vehicles on Beiyuan Road were recorded. The average concentrations of NO, NO2, NOx, CO, O3, and SO2 at the monitoring site were 0.148 mg/m3, 0.107 mg/m3, 0.333 mg/m3, 5.110 mg/m3, 0.006 mg/m3, and 0.157 mg/m3, respectively during the sampling period in winter and 0.021 mg/m3, 0.068 mg/m3, 0.101 mg/m3, 4.170 mg/m3, 0.083 mg/m3, and 0.056 mg/m3, respectively in summer. The high concentrations of CO and O3 reflect the influence of vehicles emission near the traffic lines evidently. The higher concentrations of CO, NO and O3 in summer may indicate that the characteristics of traffic pollution were more pronounced in summer. Results of regression analysis showed that in winter the concentrations of SO2 and CO were significantly positively correlated with the emission of heating boilers at night and negatively correlated with wind speed in daytime. The concentrations of NO and NOx were negatively correlated with wind speed, positively correlated with emission of heating boilers in daytime and positively correlated with traffic density at nighttime. The concentrations of NO2 were positively correlated with the emission of heating boilers in daytime and traffic density at nighttime. In summer, the air quality at the monitoring site and the contrasting site was mainly influenced by the traffic emissions.  相似文献   

7.
This paper describes laboratory experiments designed to obtain the infrared spectra of some atmospherically important radical species and related compounds. A Fourier transform spectrometer was used that was capable of yielding resolutions as great as 0.0024 cm-1, and optical paths of up to 512 m were employed. The objective of the experiments was to obtain the spectra for subsequent application to remote sounding measurements in the atmosphere.Radicals were generated by a variety of chemical reactions involving atoms or other highly reactive precursors. Spectra of the 3 band of NO3, at ca. 1500 cm-1, were obtained with up to 0.005 cm-1 resolution using the reaction between NO2 and O3 to produce the radical. The most satisfactory source of ClO was found to be the reaction between Cl and O3, and the (1-0) vibration-rotation band in the region 829–880 cm-1 was recorded at a resolution of 0.02 cm-1. We were unable to observe infrared absorption of HO2 with any of the radical sources that we tested. High-resolution survey spectra were obtained of compounds used as reactants, or formed as side-products in the radical-generating processes. These compounds included N2O5, HNO3, ClONO2, FNO2, Cl2O, HO2NO2, and probably FO2.The ability to monitor concentrations of the NO3 radical in the visible region of the spectrum as well as the concentrations of reactants and other products in the infrared region allowed us to undertake a study of the time-dependent interactions occurring when NO2 reacts with O3. The results indicate the importance of heterogeneous processes, especially when traces of water are present, and lend credence to suggestions that heterogeneous mechanisms in the NO3–N2O5–H2O system might be a viable source of HNO3 in the atmosphere.  相似文献   

8.
Field measurement programs in Brazil during the dry seasons in August and September 1979 and 1980 have demonstrated the large importance of the continental tropics in global air chemistry. Many important trace gases are produced in large amounts over the continents. During the dry season, much biomass burning takes place, especially in the cerrado regions, leading to a substantial emission of air pollutants, such as CO, NO x , N2O, CH4 and other hydrocarbons. Ozone concentrations are enhanced due to photochemical reactions. The large biogenic organic emissions from tropical forests play an important role in the photochemistry of the atmosphere and explain why CO is present in such high concentrations in the boundary layer of the tropical forest. Carbon monoxide production may represent more than 3% of the net primary productivity of the tropical forests. Ozone concentrations in the boundary layer of the tropical forests indicate strong removal processes. Due to atmospheric supply of NO x by lightning, there is probably a large production of O3 in the free troposphere over the Amazon tropical forests. This is transported to the marine-free troposphere and to the forest boundary layer.  相似文献   

9.
Gaseous pollutants and PM2.5 aerosol particles were investigated during a tropical storm and an air pollution episode in southern Taiwan. Field sampling and chemical analysis of particulate matter and gaseous pollutants were conducted in Daliao and Tzouying in the Kaohsiung area, using a denuder-filter pack system during the period of 22 October to 3 November 2004. Sulfate, nitrate and ammonium were the major ionic species in the PM2.5, accounting for 46 and 39% of the PM2.5 for Daliao and Tzouying, respectively. Higher PM2.5, Cl?, NO3? and NH4+, HNO2 and NH3 concentrations were found at night in both stations, whereas higher HNO3 was found during the day. In general, higher PM2.5, HCl, NH3, SO2, Cl?, NO3?, SO42? and NH4+ concentrations were found in Daliao. The synoptic weather during the experiment was first influenced by Typhoon NOCK-TEN, which resulted in the pollutant concentrations decreasing by about two-thirds. After the tropical thunderstorm system passed, the ambient air quality returned to the previous condition in 12 to 24 h. When there was a strong subsidence accompanied by a high-pressure system, a more stable environment with lower wind speed and mixing height resulted in higher PM2.5, as well as HNO2, NH3, SO42?, Cl?, NO3?, NH4+ and K+ concentrations during the episode days. The rainfall is mainly a scavenger of air pollutants in this study, and the stable atmospheric system and the high emission loading are the major reasons for high air pollutant concentrations.  相似文献   

10.
In 1997 and 1998 several field campaigns for monitoring non-methane volatile organic compounds (NMVOCs) and nitrogen oxides (NOx) were carried out in a road traffic tunnel and in the city center of Wuppertal, Germany. C2–C10 aliphatic and aromatic hydrocarbons were monitored using a compact GC instrument. DOAS White and long path systems were used to measure aromatic hydrocarbons and oxygenated aromatic compounds. A formaldehyde monitor was used to measure formaldehyde. Chemiluminescence NO analysers with NO2 converter were used for measuring NO and NO2. The high mixing ratios of the NMVOCs observed in the road traffic tunnel, especially 2.9 ppbv phenol, 1.5ppbv para-cresol and 4.4 ppbv benzaldehyde, in comparison with themeasured background concentration clearly indicate that these compounds were directly emitted from road traffic. Para-Cresol was for the first timeselectively detected as primary pollutant from traffic. From the measured data a NMVOC profile of the tunnel air and the city air, normalised to benzene (ppbC/ppbC), was derived. For most compounds the observed city air NMVOC profile is almost identical with that obtained in the traffic tunnel. Since benzene originates mainly from road traffic emission, the comparison of the normalised emission ratios indicate that the road traffic emissions in Wuppertal have still the largest impact on the city air composition, which is in contrast to the German emission inventory. In both NMVOC profiles, aromatic compounds have remarkably large contributions of more than 40 ppbC%. In addtion, total NMVOC/NOx ratios from 0.6 up to 3.0ppbC/ppb in the traffic tunnel air and 3.4± 0.5 in the city air of Wuppertal were obtained. From the observed para-cresol/toluene and ortho-cresol/toluene ratios in the city air, evidence was found thatalso during daytime NO3 radical reactions play an important role in urban air.  相似文献   

11.
We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO42–, NO3, and NH4+ concentrations were 8.3, 12.5, and 14.1 μg m–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m–3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9–5.2) and 5.3 (4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO42– and NO3 in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO42–, NO3, and NH4+ under haze conditions. The aerosol pH was more sensitive to the SO42– and NH4+ concentrations with opposing trends, than to the NO3 concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.  相似文献   

12.
Gaseous nitrogen compounds (NO x , NO y , NH3, N2O) were measured at ground level in smoke plumes of prescribed savanna fires in Lamto, in the southern Ivory Coast, during the FOS/DECAFE experiment in January 1991. During the flaming phase, the linear regression between [NO x ] and [CO2] (differences in concentration between smoke plumes and atmosheric background) results volumic emission ratio [NO x ]/[CO2]=1.37×10–3 with only slight differences between heading and backing fires. Nearly 90% of the nitrogen oxides are emitted as NO. Average emission ratios of other compounds are: 1.91, 0.047, and 0.145×10–3 for NO y , NH3 and N2O, respectively. The emission ratios obtained during this field experiment are compred with corresponding values measured during former experiments with the same plant species in combustion chambers. An accurate determination of both the biomass actually burned and of the plant nitrogen content, allows an assessment of emission fluxes of N-compounds from Guinean savanna burns. Preliminary results dealing with the influence of fire on biogenic emissions from soils are also reported.  相似文献   

13.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

14.
Summary The atmospheric concentrations of several primary species: NO, NO2, NOx, CO, SO2, reactive hydrocarbons (ROG) and other 15 atmospheric and meteorological variables have been measured at several locations in Córdoba city, Argentina since June 1995. The measurements are carried out using two mobile stations to cover several important areas of Córdoba. The objective of this work is to estimate the effects of meteorology and urban structure on the air quality levels for this city using simple statistics. We analyze the correlation between primary pollutants (CO and NOx) and site locations of the air quality monitoring stations (AQMS) during the whole 1995 field campaign. In this study we take the measured data for primary pollutants and group them by location and time of the year. The results of this work may be useful to forecast air pollution episodes. Also we can get indirect information about emissions and maybe identify source characteristics. Once the influences of topography, meteorology, and land use will be fully characterized, the existing monitoring data will be used to do air quality modeling analysis and to select monitoring locations. The use of mobile stations instead of stationary ones at this stage is justified because of limited funding. Therefore, it is a valid option to decide in the future the additional instrumentation required to characterize completely the atmospheric urban area.With 5 Figures  相似文献   

15.
Described is a system for analyzing and forecasting the air quality in the central regions of Russia, During the operation of the system, the detailed meteorological information provided by the WRF-ARW model is used by the CHIMERE chemistry transport model for simulating the processes of transport, chemical transformation, and deposition of atmospheric minor constituents. Considered is the quality of retrieved and forecasted (with the lead time up to three days) concentrations of O3, NO2, NO, CO, and PM10. The presented verification scores of pollutant concentrations demonstrate a relative success of the system. Demonstrated is a need in improving the data on the emissions of the air pollutants used for simulations. A procedure for the statistical correction of computed concentrations is described and verification scores of its results are given.  相似文献   

16.
Free Radicals and Fast Photochemistry during BERLIOZ   总被引:4,自引:0,他引:4  
The free radicals OH, HO2, RO2, and NO3 are known to be the driving force for most chemical processes in the atmosphere. Since the low concentration of the above radicals makes measurements particularly difficult, only relatively few direct measurements of free radical concentrations have been reported to date.We present a comprehensive set of simultaneous radical measurements performed by Laser Induced Fluorescence (LIF), Matrix Isolation –Electron spin Resonance (MI-ESR), Peroxy Radical Chemical Amplification (PERCA), and Differential Optical Absorption Spectroscopy (DOAS) during the BERLIner OZonexperiment (BERLIOZ) during July and August of 1998 near Berlin, Germany. Most of the above radical species were measured by more than one technique and an intercomparison gave good agreement. This data set offered the possibility to study and quantify the role of each radical at a rural, semi-polluted site in the continental boundary layer and to investigate interconnections and dependencies among these free radicals.In general (box) modelled diurnal profiles of the different radicals reproduced the measurements quite well, however measured absolute levels are frequently lower than model predictions. These discrepancies point to disturbing deficiencies in our understanding of the chemical system in urban air masses.In addition considerable night-time peroxy radical production related to VOC reactions with NO3 and O3 could be quantified.  相似文献   

17.
A coupled chemical/dynamical model (SOCOL-SOlar Climate Ozone Links) is applied to study the impacts of future enhanced CO and NOx emissions over eastern China on regional chemistry and climate. The result shows that the increase of CO and NOx emissions has significant effects on regional chemistry, including NOx, CO, O3, and OH concentrations. During winter, the CO concentration is uniformly increased in the northern hemisphere by about 10 ppbv. During summer, the increase of CO has a regional distribution. The change in O3, concentrations near eastern China has both strong seasonal and spatial variations. During winter, the surface O3, concentrations decrease by about 2 ppbv, while during summer they increase by about 2 ppbv in eastern China. The changes of CO, NOx, and O3, induce important impacts on OH concentrations. The changes in chemistry, especially O3, induce important effects on regional climate. The analysis suggests that during winter, the surface temperature decreases and air pressure increases in central-eastern China. The changes of temperature and pressure produce decreases in vertical velocity. We should mention that the model resolution is coarse, and the calculated concentrations are generally underestimated when they are compared to measured results. However, because this model is a coupled dynamical/chemical model, it can provide some useful insights regarding the climate impacts due to changes in air pollutant emissions.  相似文献   

18.
Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious problem in Beijing in recent years. To study the temporal and spatial variations in the chemical components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from 2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon (EC), K+, NH4 +, NO3 ?, SO4 2?, Cl?, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for analysis. Overall, OC, SO4 2?, NO3 ?, and NH4 + were dominant among 15 components, the annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and 13.20 ± 12.80 μg·m?3, respectively. Compared with previous studies, the concentrations of NH4 + were significantly higher in this study. In winter, the average concentrations of OC and EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in spring, summer, autumn, and winter, respectively. The annual average [NO3 ?]/[SO4 2?] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in Beijing, indicating that the contribution ratio of mobile source increased in recent years in Beijing. Analysis of correlations between temperature and relative humidity and between SOR ([SO4 2?]/([SO4 2?] + [SO2])) and NOR ([NO3 ?]/([NO3 ?] + [NO2])) indicated that gas-phase oxidation reactions were the major formation mechanism of SO4 2? in spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous reactions both occurred in autumn and winter. NO3 ? was mainly formed through year-round heterogeneous reactions in urban Beijing.  相似文献   

19.
This paper deals with the atmospheric concentrations of PM5 and PM2.5 particulate matter and its water soluble constituents along with the size distribution of ions and spatial variation at three different residential environments in a semiarid region in India. Samples were collected from the indoors and outdoors of urban, rural and roadside sites of Agra during October 2007–March 2008. The mean concentrations of PM2.5 indoors and outdoors were 178 μgm−3 and 195 μgm−3 while the mean concentrations of PM5 indoors and outdoors were 231.8 μgm−3 and 265.2 μgm−3 respectively. Out of the total aerosol mass, water soluble constituents contributed an average of 80% (33% anions, 50% cations) in PM5 and 70% (29% anions, 43% cations) in PM2.5. The indoor–outdoor ratio of water soluble components suggested additional aerosol indoor sources at rural and roadside sites. Indoor–outdoor correlations were also determined which show poor relationships among concentrations of aerosol ions at all three sites. Univariate Pearson correlation coefficients among water soluble aerosols were determined to evaluate the relationship between aerosol ions in indoor and outdoor air.  相似文献   

20.
Surface ozone is mainly produced by the photodissociation of nitrogen dioxide (NO2) by solar UV radiation. Subsequently, solar eclipses provide one of the unique occasions to explore the variations in the photolysis rate of NO2 and their significant impact on the production of ozone at a location. This study aims to examine the diurnal variations in the photodissociation rate coefficient of NO2, (j(NO2*)), and mixing ratios of surface ozone and NO X * (NO?+?NO2*) during the solar eclipse that occurred on 15 January 2010 at Kannur (11.9°N, 75.4°E, 5?m amsl), a tropical coastal site on the Arabian Sea in South India. This investigation was carried out on the basis of the ground level observations of surface ozone and its prominent precursor NO2*. The j(NO2*) values were estimated from the observed solar UV-A flux data. A sharp decline in j(NO2*) and surface ozone was observed during the eclipse phase because of the decreased efficiency of the ozone formation from NO2. The NO2* levels were found to increase during this episode, whereas the NO levels remained unchanged. The surface ozone concentration was reduced by 57.5%, whereas, on the other hand, that of NO X * increased by 62.5% during the solar eclipse. Subsequently a reduction of *% in the magnitude of j(NO2*) was found here during the maximum obscuration. Reductions in solar insolation, air temperature and wind speed were also observed during the solar eclipse event. The relative humidity showed a 6.4% decrease during the eclipse phase, which was a unique observation at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号