首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shallow vertical electrical sounding (VES) technique with Schlumberger electrode array (maximum distance between current electrodes was 50 m) through 25 VES points distributed on five traverses. Two 2D imaging lines with Wenner electrode array 30 m each corresponding to two VES traverses were conducted near well water contaminated with hydrocarbon materials at Karbala Governorate, Iraq. It is found that these techniques can give good results in delineating contaminated and clear zones but the 2D imaging technique was better in delineating the boundaries of the contaminated water plume and gave clear image of the subsurface distribution of the contaminated water vertically and horizontally.  相似文献   

2.
3.
4.
Exploration and exploitation of coal seams is one of the major resources for the energy sector in any country but at the same time water filled voids/water logged areas in the old workings of these seams are very critical problems for the coal mining industry. In such situations, disasters like inundation, landslides, collapsing of the old seams may occur. In this regard, it is necessary to find out the water saturated/water filled voids and zones in the mining areas. Since no established technique is available to find such zones, an experimental study using Electrical Resistivity Imaging (ERI) has been carried out in one of the coal mining areas near Dhanbad, to find out the feasibility of finding the barrier thickness and the water logged area in underground coal mines. The area under study forms part of Jharia coalfield in Dhanbad district, Jharkhand state. The coal bearing rocks of Barakar Formation of Lower Permian age (Gondwana period) occur in the area under a thin cover (10 m to15 m) of soil and or alluvium. Coal bearing Barakar Formations consist mainly of sandstone of varying grain size, intercalation of shale and sandstone, grey and carbonaceous-shale and coal seams. Since the water saturation reduces the resistivity of a formation to a large extent, water filled voids and old coal workings are expected to have significant resistivity contrast with the surrounding host rock. Hence, ERI technique was applied in such an environment as this technique uses high-density data acquisition both laterally and vertically by using multiple number of electrodes. Along with ERI, mise-à-la-masse (also called charged body) technique was also employed at one of the promising sites to find out the connectivity of water logged areas and also detection of these old workings from the surface measurements was analyzed. The interpreted 2D resistivity sections have clearly indicated the water bearing zone(s) along the profile which was well confirmed with the existing water level in the nearby borewells. On the other hand, this technique did not identify the size of the coal pillar and gallery (air filled voids), which might be due to the small size of the voids (i.e. about 2 m × 2 m) below a depth of 15m and more but have indicated altogether as a high resistive zone ranging from 600–1000 Ohm-m.  相似文献   

5.
The assessment of hydrochemical quality of groundwater is very important to explore its nature and usefulness. In this paper, groundwater quality evaluation is carried out in the Balad district, Salah Al-Din Governorate, Iraq. A total of 28 groundwater samples are collected from shallow tube wells and analyzed for various physicochemical parameters. Groundwater suitability for drinking is evaluated based on the World Health Organization (WHO) and Iraqi standards, and suitability of groundwater for irrigation is assessed based on various hydrochemical parameters. The results reveal that the dominant types of groundwater based on piper diagram are mixed CaMgCl and CaCl. Gibbs ratio indicates that the groundwater in the studied area is affected by the evaporation process. The cation-anion exchange reaction in the studied area demonstrates that 54% of the groundwater samples indicate a direct base (cation-anion) exchange reaction, while 46% of the groundwater samples indicating the chloro-alkaline disequilibrium. Furthermore, generally all of the groundwater samples are unsuitable for drinking and irrigation. Cluster analysis reveals two different groups of similarities between the groundwater samples, reflecting different pollution levels in the studied area.  相似文献   

6.
This study was based on the results of geochemical analysis of 332 core and 10 cutting rock samples from Triassic Jurassic, Cretaceous, and Triassic age, in addition to seismic sections, logs, initial drilling results, final reports of oil wells, and previous studies. Constructing models from these data are to assess new oil reservoirs, evaluation, and development of the existing oil reservoirs and hydrocarbon potential, and suggesting petroleum systems in order to reduce exploration risk and develop simple risk assessment of oil fields in the studied area. In general, Abu-Jir fault zone divides the studied area into two petroleum provinces: Mesopotamian Foredeep Basin and Widyan Basin–Interior Platform. The Mesopotamian Fordeep basin are thick stratigraphic sequences with no exploration for oil or gas source rock intervals within the Paleozoic sequence. while the Mesozoic sequence offers the best potential. The transitional sequence of the Triassic period is expected to contain occasional fair to good quantity of oil source rock intervals. The Widyan Basin–Interior Platform is an area with possible deployment of low to moderate risk of Paleozoic play and Lower Mesozoic plays with fair Triassic and Mesozoic objectives. Oil has generated and expelled into traps in the studied area during two phases; the first is during Early Palaeogene that accumulated in traps of the Cretaceous structural deformation, while the second is during Late Neogene.  相似文献   

7.
The study area is located in the southern part of Sinai Peninsula. This study was done to delineate the subsurface structure of the basement rocks affecting the groundwater potentiality in the study area and to perform the lateral and vertical variations in the subsurface lithologic properties. To achieve these, a high-resolution total intensity magnetic map and geo-electrical survey were acquired. Two-dimensional power spectrum, analytical signal, and Euler deconvolution techniques are applied on magnetic data. The geo-electric data interpretations concluded that, the study area can be classified into five units of sediments arranged as: (1) the top surficial layer of dry sand and gravels; (2) the second layer of silty sand layer with thickness ranging from 5 to 35 m; (3) the third layer of dry sand with thickness ranging from 5 to 130 m; (4) the fourth layer composed of saturated sand which was considered as the water-bearing zone of the investigated interval, its thickness ranges between 50m and more than 200 m; (5) the fifth layer is interpreted as basement rocks. The depth to the basement surface has an average value of 156 m at the eastern side and 758 m at the western side of the study area. This area is characterized by a graben structure bounded by major faults striking in the NW–SE direction and is considered one of the most promising regions for water resources in Sinai.  相似文献   

8.
The hydrogeologic environment of a petroleum hydrocarbon contaminated site in Korea is characterized by hydrogeologic field work and chemical analyses of groundwater. Quaternary alluvium is the main aquifer contaminated by petroleum hydrocarbons, mainly TEX (toluene, ethylbenzene and xylenes). Contamination at this site was derived from the leaking of petroleum storage tanks. The aquifer is highly permeable, but vertically heterogeneous. Water-table fluctuations reach up to 2 m during heavy rains. Contaminants migrated to the northwest along the main groundwater-flow direction. The concentration of hydrocarbons in groundwater is particularly high downgradient from the source area. The ubiquitous distribution of TEX was caused by the heterogeneity of the aquifer material and the significant fluctuation of the water-table. Chemical properties of the contaminated groundwater and field parameters indicate that intrinsic biodegradation, including aerobic respiration, nitrate reduction, iron reduction, manganese reduction, and sulfate reduction, occurs at this site. The dilution and mixing due to new groundwater recharge from rainfall is also identified as one of the major attenuation processes of TEX.  相似文献   

9.
The iron mineralization is hosted in carbonate beds of the Garagu Formation (Early Cretaceous) at Gara Mountain, Duhok Governorate, Kurdistan Region, NE Iraq. The Garagu Formation is composed of a series of limestone and siltstone beds with iron-rich beds in the middle part. The iron-rich limestones are iron-rich oolitic grainstone and bioclastic wackestone with hematite and goethite minerals. Geochemical results drawn from this study indicate that the percentage of iron in these beds reaches 19.73 %. Moreover, petrographical investigation of thin and polished sections reveals the presence of different types of fossils, indicating an open marine interior platform depositional environment. Different iron minerals, including hematite, goethite, siderite, pyrite and magnetite, were identified in the sections, and their geneses were related to syngenetic and diagenetic processes. The geochemical distribution of major and trace elements, as well as the V/Ni, V/(V+Ni), V/Cr and Sr/Ba ratios, indicates a reducing environment during the precipitation of carbonate sediments and a subsequent oxidizing condition during the concentration of iron minerals via diagenesis.  相似文献   

10.
The present study seeks to interpret seismic reflection data for an area measuring approximately about 1,450 km2 within the Erbil plain in the Kurdistan Region of Iraq to produce subsurface geological pictures. Thirteen seismic lines were identified by the Iraqi Oil Exploration Company using dynamite sources and then processed; then, a seismic line, BH-15, of around 432.5 km total length was used in this study. Three horizons (reflectors) were selected and identified by tying them directly to Demir Dagh well no. 1, these are H1, a reflector that represents the near top of the Lower Fars Formation; H2, a reflector that represents the top of the Pila Spi Formation; and H3, a reflector that represents the top of the Shiranish Formation. The qualities of the reflectors range between fair and good. All the isochrone and depth maps and 3D view pictures of the reflectors show the same main subsurface structural features trending in a NW–SE direction, namely, Erbil trough, Sherawa trough, and the southeastern plunge of the Demir Dagh anticline. Ninety-five normal and reverse-type faults trending in a NW–SE direction were detected. Also, the maps show that the reflectors tend to increase in dipping and deepening towards the southeastern and eastern parts.  相似文献   

11.
Subsurface regions of alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing minerals, which are referred to as naturally reduced zones (NRZ), are present at the Integrated Field Research Challenge site in Rifle, CO (a former U mill site), and other contaminated subsurface sites. A study was conducted to demonstrate that the NRZ contains a variety of contaminants and unique minerals and potential contaminant hosts, investigate micron-scale spatial association of U with other co-contaminants, and determine solid phase-bounded U valence state and phase identity. The NRZ sediment had significant solid phase concentrations of U and other co-contaminants suggesting competing sorption reactions and complex temporal variations in dissolved contaminant concentrations in response to transient redox conditions, compared to single contaminant systems. The NRZ sediment had a remarkable assortment of potential contaminant hosts, such as Fe oxides, siderite, Fe(II) bearing clays, rare solids such as ZnS framboids and CuSe, and, potentially, chemically complex sulfides. Micron-scale inspections of the solid phase showed that U was spatially associated with other co-contaminants. High concentration, multi-contaminant, micron size (ca. 5–30 μm) areas of mainly U(IV) (53–100%) which occurred as biogenic UO2 (82%), or biomass – bound monomeric U(IV) (18%), were discovered within the sediment matrix confirming that biotically induced reduction and subsequent sequestration of contaminant U(VI) via natural attenuation occurred in this NRZ. A combination of assorted solid phase species and an abundance of redox-sensitive constituents may slow U(IV) oxidation rates, effectively enhancing the stability of U(IV) sequestered via natural attenuation, impeding rapid U flushing, and turning NRZs into sinks and long-term, slow-release sources of U contamination to groundwater.  相似文献   

12.
TheAssamArakan fold thrust belt has highly deformed folded units of Tertiary sediments bounded by eastward dipping thrust slices with a convexity towards west. In the Tripura-Cachar region, this folded belt is characterized by the occurrence of wide synclines and narrow anticlines that hosts a number of hydrocarbon producing fields. In the Cachar area of Assam, most of these fields occur in the culmination of anticlinal structures. Other wells drilled in analogous structural settings are found to be dry. In this paper a neotectonic based geomorphic analysis is carried out to delineate a fault network and geomorphic highs in Cachar area as expressions of sub-surface structures which had subsequently been validated by available geophysical data. Of these geomorphic highs, those that are in the synclinal areas are believed to represent subtle sub-surface structural highs. Synclinal structures associated with NNE-SSW faults might be considered interesting for hydrocarbon exploration and are subsequently categorized following their degree of confidence for exploration of hydrocarbon. Additionally, a genetic model of the structures in the region is also proposed.  相似文献   

13.
Chemical analysis was carried out to evaluate the potentiality of rock samples having hydrocarbon characteristics, identified by chemical methods as one of the approaches to evaluate the source rocks encountered from Sehkanian, Sargelu, Naokelekan, Sarmord and Ghia Gara of (Middle to Upper Jurassic–Lower Cretaceous) stratigraphic sequence of Iraq, representing source rocks, which are recovered from oil exploratory wells Butmah-15, Ajeel-8, Makhul-2, Qarachuq (1 and 2) and TaqTaq-1 (Bm-15, Aj-8, Mk-2, Qc-1,Qc-2 and Taq-1) alternatively, located in the northern part of Iraq and also the outcrop samples extracted from the type locality at Surdash Anticline. Additional samples were taken from another exposure section of the Jurassic rocks from Banik village, those various samples represent Varity of palynofacies. The bulk of chemical analysis enables to enhance the potentiality of the source rocks, leading to believe generating tremendous amount of oil and subordinate gas promising more than earlier predictions for forming super giant oil and thermogenic gas fields in this area. The value of the production indices determines that the system of the oil in Iraq is not widely different from the depocenters of the surrounding countries. Accordingly Iraq is considered as an ideal and systematic basin that all the total petroleum system elements are available, giving indications of good source rocks, extensive reservoirs and excellent seals. Typical oil fields, which as determined by the remarkable total organic carbon exceeds 20 %, and maturation evidences accompanied with maximum temperature up to 450°C indicate obviously various values of the hydrogen and oxygen indices, kerogen type II and type III, of marine to mixed to terrestrial origin that lead to determine that the oil and gas prone Sargelu, Naokelekan and Ghia Gara were good source rocks. Meanwhile Barsarin and Sarmord were reservoir rocks. The area of study is widely promising to produce oil with condensed gas.  相似文献   

14.
Seventy-two core and cutting samples of the Ratawi Formation from selected wells of central and southern Iraq in Mesopotamian Foredeep Basin are analysed for their sedimentary organic matters. Dinoflagellates, spores and pollen are extracted by palynological techniques from these rocks. Accordingly, Hauterivian and late Valanginian ages are suggested for their span of depositional time. These palynomorphs with other organic matter constituents, such as foraminifer’s linings, bacteria and fungi, are used to delineate three palynofacies types that explain organic matter accumulation sites and their ability to generate hydrocarbons. Palaeoenvironments of these sites were mainly suboxic to anoxic with deposition of inshore and neritic marine environments especially for palynofacies type 2. Total organic matters of up to 1.75 total organic carbon (TOC) wt.% and early mature stage of up to 3.7 TAI based on the brown colour of the spore species Cyathidites australis and Gleichenidites senonicus with mottled interconnected amorphous organic matter are used for hydrocarbon generation assessment from this formation. On the other hand, these rock samples are processed with Rock-Eval pyrolysis. Outcomes and data calculations of these analyses are plotted on diagrams of kerogen types and hydrocarbon potential. Theses organic matter have reached the mature stage of up to T max?=?438 °C, hydrogen index of up to 600 mg hydrocarbons for each gram of TOC wt.% and mainly low TOC (0.50–1.55). Accordingly, this formation could generate fair quantities of hydrocarbons in Baghdad oil field and Basrah oil fields. Organic matters of this formation in the fields of Euphrates subzone extends from Hilla to Nasiriyah cities have not reached mature stage and hence not generated hydrocarbons from the Ratawi Formation. Software 1D PetroMod basin modelling of the Ratawi Formation has confirmed this approach of hydrocarbon generation with 100 % transformations of the intended organic matters to generate hydrocarbons to oil are performed in especially oil fields of East Baghdad, West Qurna and Majnoon while oil fields Ratawi and Subba had performed 80–95 % transformation to oil and hence end oil generation had charged partly the Tertiary traps that formed during the Alpine Orogeny. Oil fields of Nasiriyah and Kifle had performed least transformation ratio of about 10–20 % transformation to oil, and hence, most of the present oil in this field is migrated from eastern side of the Mesopotamian Foredeep Basin that hold higher maturation level.  相似文献   

15.
Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80–85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.  相似文献   

16.
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.  相似文献   

17.
This work aims to evaluate the predictive capability of three bivariate statistical models, namely information value, frequency ratio, and evidential belief functions, in gully erosion susceptibility mapping in northeastern Maysan Governorate (Ali Al-Gharbi District) in southern Iraq. The gully inventory map, consisting of 21 gullies of different sizes, was prepared based on the interpretation of remotely sensed data supported by field survey. The gully inventory data (polygon format) were randomly partitioned into two sets: 14 gullies for build and training the bivariate model, and the remaining 7 gullies for validating purposes. Twelve gully influential factors were selected based on data availability and the literature review. The selected factors were related to lithology, geomorphology, soil, land cover, and topography (primary and secondary) settings. Analysis of factor importance using information gain ratio proved that out of 12 gully influential factors, eight were of more importance in developing gullies (the average merit was greater than zero). The most important factors and the training gully inventory map were used to generate three gully erosion susceptibility maps based on the three bivariate models used. For validation, the area under the operating characteristics curves for both success and prediction rates was used. The results indicated that the highest prediction rate of 82.9% was achieved using the information value technique. All the bivariate models had prediction rates greater than 80%, and thus they were regarded as very good estimators. The final conclusion was that the bivariate models offer advanced techniques for mapping gully erosion susceptibility.  相似文献   

18.
In the NW Sub-Himalayan frontal thrust belt in India, seismic interpretation of subsurface geometry of the Kangra and Dehradun re-entrant mismatch with the previously proposed models. These procedures lack direct quantitative measurement on the seismic profile required for subsurface structural architecture. Here we use a predictive angular function for establishing quantitative geometric relationships between fault and fold shapes with ‘Distance–displacement method’ (D–d method). It is a prognostic straightforward mechanism to probe the possible structural network from a seismic profile. Two seismic profiles Kangra-2 and Kangra-4 of Kangra re-entrant, Himachal Pradesh (India), are investigated for the fault-related folds associated with the Balh and Paror anticlines. For Paror anticline, the final cut-off angle \(\beta =35{^{\circ }}\) was obtained by transforming the seismic time profile into depth profile to corroborate the interpreted structures. Also, the estimated shortening along the Jawalamukhi Thrust and Jhor Fault, lying between the Himalayan Frontal Thrust (HFT) and the Main Boundary Thrust (MBT) in the frontal fold-thrust belt, were found to be 6.06 and 0.25 km, respectively. Lastly, the geometric method of fold-fault relationship has been exercised to document the existence of a fault-bend fold above the Himalayan Frontal Thrust (HFT). Measurement of shortening along the fault plane is employed as an ancillary tool to prove the multi-bending geometry of the blind thrust of the Dehradun re-entrant.  相似文献   

19.
Water seepage to ground surface at a limestone quarry located at Wadi Garawy about 20 km south-east of Helwan city in Egypt posed a real threat to the mining activity at the quarry. The quarry area is known to be very dry for decades and away from water utilities and infrastructures that may cause water leaks to the quarry. Geophysical investigation including 1D Vertical Electrical Sounding (VES), 2D Electrical Resistivity Tomography (ERT) and 1D Transient Electromagnetic (TEM) surveys were conducted to characterize the rock sequence and locate what could be a possible source of water seepage to the quarry. The resistivity profiles generated from the VES and TEM surveys mapped the rock units in the area down to depths exceeded 100 m. The ERT profiles acquired from the quarrying zone close to the water seepage spot have imaged the top of groundwater level at few meters below the ground surface at the quarry open pit. The spot of groundwater seepage seemed to occur at an area of limestone dissolution that were filled by finer sediments. The finer sediments acted as a hydrological conduit that allowed an upward seepage of groundwater to ground surface under the capillary action effect.  相似文献   

20.
Geophysical survey was carried out in an effort to solve an underground flooding problem at the Bangur chromite mine of Odisha Mining Corporation Limited, Odisha, India. To identify sources and pathways of the influx, very low-frequency electromagnetic, self-potential and resistivity surveys were performed. Geophysical studies clearly depict a major fracture zone passing through the mine and its connection to a water storage pond. The fracture zone extends further west from the pond to the Salandi River and the Salandi Reservoir. The dip of the delineated fracture zone is around 45° to the N, and it matches with the fault plane exposed in the mine. Since water enters into the mine from the west, the delineated fracture zone is thought to be the main pathway for the inflow. Geophysical studies conclude that the IMFA pond, Salandi River and Salandi Reservoir could be possible sources of water in the mine. To ascertain the source and pathway, tracer testing was conducted at two locations, based on the geophysical survey by the hydrogeological team, but tracer test results were inconclusive. However, the fact remains that the water enters to the mine through the delineated fracture and poses threat in mine operation. Dumping water in nearby pond will again enter in mine with interconnected fractures. Therefore, for safe mining operation, it is proposed to drill a slanted tube well at the delineated fracture and pump out maximum water and discharge the pumped water at canal situated about 2.5 km from the mine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号