首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

2.
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.  相似文献   

3.
Regional seismic reflection profiles tied to lithological and biostratigraphic data from deep exploration wells have been used to determine the structure and evolution of the poorly known basins of northern Somalia. We recognize six major tectonostratigraphic sequences in the seismic profiles: Middle‐Late Jurassic syn‐rift sequences (Adigrat and Bihen Group), ?Cenomanian‐Campanian syn‐rift sequences (Gumburo Group), Campanian‐Maastrichtian syn‐rift sequences (Jesomma Sandstones), Palaeocene post‐rift sequences (Auradu Limestones), Early‐Middle Eocene post‐rift sequences (Taleh Formation) and Oligocene‐Miocene (Daban Group) syn‐rift sequences. Backstripping of well data provides new constraints on the age of rifting, the amount of crustal and mantle extension, and the development of the northern Somalia rifted basins. The tectonic subsidence and uplift history at the wells can be explained by a uniform extension model with three episodes of rifting punctuated by periods of relative tectonic quiescence and thermal subsidence. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr and had a NW‐SE trend. We interpret the rift as a late stage event associated with the break‐up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20–40 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi‐rift extensional model with stretching factor, β, of 1.09–1.14 and 1.05–1.28 for the first and second rifting events, respectively. The model, fails, however, to completely explain the slow subsidence and uplift history of the margin during Early Cretaceous to Late Cretaceous. We attribute this slow subsidence to the combined effect of a sea‐level fall and regional uplift, which caused a major unconformity in northern Somalia. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift developed along the Gulf of Aden and reactivated the Guban, Nogal and Daroor basins, and is related to the opening of the Gulf of Aden. As a result of these events the crust and upper mantle were thinned by up to a factor of two in some basins. In addition, several distinct petroleum systems developed. The principal exploration play is for Mesozoic petroleum systems with the syn‐rift Oligocene‐Miocene as a subordinate objective owing to low maturity and seal problems. The main seals for the different plays are various shales, some of which are also source rocks, but the Early Eocene evaporites of the Taleh formations can also perform a sealing role for Palaeogene or older generated hydrocarbons migrating vertically.  相似文献   

4.
Depth‐dependent stretching, in which whole‐crustal and whole‐lithosphere extension is significantly greater than upper‐crustal extension, has been observed at both non‐volcanic and volcanic rifted continental margins. A key question is whether depth‐dependent stretching occurs during pre‐breakup rifting or during sea‐floor spreading initiation and early sea‐floor spreading. Analysis of post‐breakup thermal subsidence and upper‐crustal faulting show that depth‐dependent lithosphere stretching occurs on the outer part of the Norwegian volcanic rifted margin. For the southern Lofoten margin, large breakup lithosphere β stretching factors approaching infinity are required within 100 km of the continent–ocean boundary to restore Lower Eocene sediments and flood basalt surfaces (~54 Ma) to interpreted sub‐aerial depositional environments at sea level as indicated by well data. For the same region, the upper crust shows no significant Palaeocene and Late Cretaceous faulting preceding breakup with upper‐crustal β stretching factors <1.05. Further north on the Lofoten margin, reverse modelling of post‐breakup subsidence with a β stretching factor of infinity predicts palaeo‐bathymetries of ~1500 m to the west of the Utrøst Ridge and fails to restore Lower Eocene sediments and flood basalt tops to sea level at ~54 Ma. If these horizons were deposited in a sub‐aerial depositional environment, as indicated by well data to the south, an additional subsidence event younger than 54 Ma is required compatible with lower‐crustal thinning during sea‐floor spreading initiation. For the northern Vøring margin, breakup lithosphere β stretching factors of ~2.5 are required to restore Lower Eocene sediments and basalts to sea level at deposition, while Palaeocene and Late Cretaceous upper‐crustal β stretching factors for the same region are < 1.1. The absence of significant Palaeocene and late Cretaceous extension on the southern Lofoten and northern Vøring margins prior to continental breakup supports the hypothesis that depth‐dependent stretching of rifted margin lithosphere occurs during sea‐floor spreading initiation or early sea‐floor spreading rather than during pre‐breakup rifting.  相似文献   

5.
The full extent of Mesozoic rift basins within interior Yemen has only recently been established. This work presents a detailed documentation of the stratigraph)., structure and basin development of the Marib-Shabwa and Sirr-Sayun basins, and the Jeza Trough. Yemen is located at the south-western margin of the Arabian Plate, which for most of its early geological history formed part of the northern passive margin of Gondwanaland. Mesozoic break up of the super-continent was associated with major rifting in the Late Jurassic (main phase) and Early Cretaceous. Orientation of the rift basins reflects an inheritance from deep-seated Precambrian structural trends which cross the Arabian Plate. The resultant structure of basement highs, tilted fault blocks, marginal terraces and central graben highs is illustrated in a series of detailed cross-sections. A comprehensive stratigraphic framework has also been established for the Jurassic and Cretaceous basin-fill, enabling thickness and facies variations to be analysed. This reveals a clear shift in the main period of fault-related, high sediment accumulation rates, both within and across the three interior basins of Yemen. In the western Marib-Shabwa Basin, the fill is dominantly Late Jurassic, whilst the eastern Shabwa Basin and Sirr-Sayun Basin exhibit a progressively increased, and younger, Early Cretaceous fill. The main period of fault-related sedimentation in the most easterly basin, the Jeza Trough, is wholly Cretaceous. Plate tectonic reconstructions of the area for this period have documented the separation and subsequent north-eastward movement of the Indian Plate, away- from Africa-Arabia. We believe this may have been the causal mechanism in the progressive eastward migration of rift activity in the Yemen.  相似文献   

6.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

7.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

8.
Recent studies of natural, multiphase rifts suggest that the presence of pre‐existing faults may strongly influence fault growth during later rift phases. These findings compare well with predictions from recent scaled analogue experiments that simulate multiphase, non‐coaxial extension. However, in natural rifts we only get to see the final result of multiphase rifting. We therefore do not get the chance to compare the effects of the same rift phase with and without pre‐existing structural heterogeneity, as we may in the controlled environment of a laboratory experiment. Here, we present a case study from the Lofoten Margin that provides a unique opportunity to compare normal fault growth with and without pre‐existing structural heterogeneity. Using seismic reflection and wellbore data, we demonstrate that the Ribban Basin formed during Late Jurassic to Early Cretaceous rifting. We also show that the rift fault network of the Ribban Basin lacks a pre‐existing (Permian‐Triassic) structural grain that underlies the neighbouring North Træna Basin that also formed during the Late Jurassic to Early Cretaceous. Being able to compare adjacent basins with similar histories but contrasting underlying structure allows us to study how pre‐existing normal faults influence rift geometry. We demonstrate that in Lofoten, the absence of pre‐existing normal faults produced collinear fault zones. Conversely, where pre‐existing faults are present, normal fault zones develop strong “zigzag” plan‐view geometries.  相似文献   

9.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

10.
ABSTRACT The regional thermal history of the north‐eastern Sverdrup Basin, Canadian Arctic Archipelago, has been assessed using apatite fission‐track thermochronology and vitrinite reflectance data. Fission‐track data for 27 samples from six wells through the Mesozoic section on Axel Heiberg and Ellesmere Islands reveal significant Palaeocene cooling associated with basin inversion during the Eurekan Orogeny. Fission‐track data for 29 outcrop samples, ranging in stratigraphic age from Cambrian to Tertiary, also reveal significant Palaeocene cooling. Vitrinite reflectance data from carbonaceous shales and coal seams in well and outcrop samples are consistent with these conclusions. The degree of Palaeocene cooling observed is greatest for well and outcrop samples in the cores of anticlines or the hanging walls of thrust faults, such as the Fosheim anticline, and faults, such as the Lake Hazen fault system, and the East Cape and Vesle Fiord thrust faults. Palaeocene cooling is largely attributed to the denudation of structures during the Eurekan Orogeny. At one locality on north‐western Ellesmere Island, which is on the northern flank of the Sverdrup Basin, the underlying Franklinian basement rocks yield Early Cretaceous fission track ages with relatively long mean track lengths. This indicates that this part of the basin was uplifted at this time and that subsequent sedimentation and subsidence in the Cretaceous and early Tertiary were modest. This locality thus appears to be on the rift shoulder, which developed along the flank of the Amerasia Basin in the Lower Cretaceous. At a locality on western Axel Heiberg Island, which is downflank from the rift shoulder, the Upper Jurassic Awingak sandstone has a Late Cretaceous fission track age. This is best explained by heating above the total annealing temperature for fission‐tracks in apatite by extensive Lower Cretaceous intrusions and subsequent heat dissipation and cooling in the Late Cretaceous followed by further substantial cooling due to Tertiary denudation. These results indicate that maximum burial temperatures occurred in the presently exposed Mesozoic section prior to basin inversion during the Eurekan Orogeny. It can therefore be inferred that peak hydrocarbon generation and primary migration predated the formation of structural traps during the Tertiary at shallow depths within the northern Sverdrup Basin.  相似文献   

11.
Baxter  Cooper  Hill  & O'Brien 《Basin Research》1999,11(2):97-111
The Vulcan Sub-basin, located in the Timor Sea, north-west Australia, developed during the Late Jurassic extension which ultimately led to Gondwanan plate breakup and the development of the present-day passive continental margin. This paper describes the evolution of upper crustal extension and the development of Late Jurassic depocentres in this subbasin, via the use of forward modelling techniques. The results suggest that a lateral variation in structural style exists. The south of the basin is characterized by relatively large, discrete normal faults which have generated deep sub-basins, whereas more distributed, small-scale faulting further north reflects a collapse of the early basin margin, with the development of a broader, 'sagged' basin geometry. By combining forward and reverse modelling techniques, the degree of associated lithosphere stretching can be quantified. Upper crustal faulting, which represents up to 10% extension, is not balanced by extension in the deeper, ductile lithosphere; the magnitude of this deeper extension is evidenced by the amount of post-Valanginian thermal subsidence. Reverse modelling shows that the lithosphere stretching
factor has a magnitude of up to β=1.55 in the southern Vulcan Sub-basin, decreasing to β=1.2 in the northern Vulcan Sub-basin. It is proposed that during plate breakup, deformation in the Vulcan Sub-basin consisted of depth-dependent lithosphere extension. This additional component of lower crustal and lithosphere stretching is considered to reflect long-wavelength partitioning of strain associated with continental breakup, which may have extended 300–500 km landward of the continent–ocean boundary.  相似文献   

12.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

13.
The impact of a pre‐existing rift fabric on normal fault array evolution during a subsequent phase of lithospheric extension is investigated using 2‐D and 3‐D seismic reflection, and borehole data from the northern Horda Platform, Norwegian North Sea. Two fault populations are developed: (i) a population comprising relatively tall (>2 km), N‐S‐striking faults, which have >1.5 km of throw. These faults are up to 60 km long, penetrate down into crystalline basement and bound the eastern margins of 6–15 km wide half‐graben, which contain >3 km of pre‐Jurassic, likely Permo–Triassic, but possibly Devonian syn‐rift strata; and (ii) a population comprising vertically restricted (<1 km), NW‐SE‐striking faults, which are more closely spaced (0.5–5 km), have lower displacements (30–100 m) and not as long (2–10 km) as those in the N–S‐striking population. The NW‐SE‐striking population typically occurs between the N‐S‐striking population, and may terminate against or cross‐cut the larger structures. NW–SE‐striking faults do not bound pre‐Jurassic half‐graben and are largely restricted to the Jurassic‐to‐Cretaceous succession. Seismic‐stratigraphic observations, and the stratigraphic position of the fault tips in both fault populations, allow us to reconstruct the Late Jurassic‐to‐Early Cretaceous growth history of the northern Horda Platform fault array. We suggest the large, N‐S‐striking population was active during the Permo–Triassic and possibly earlier (Devonian?), before becoming inactive and buried during the Early and Middle Jurassic. After a period of relative tectonic quiescence, the N‐S‐striking, pre‐Jurassic fault population propagated through the Early‐Middle Jurassic cover and individual fault systems rapidly (within <10 Ma) established their maximum length in response to Late Jurassic extension. These fault systems became the dominant structures in the newly formed fault array and defined the locations of the main, Late Jurassic‐to‐Early Cretaceous, syn‐rift depocentres. Late Jurassic extension was also accommodated by broadly synchronous growth of the NW‐SE‐striking fault population; the eventual death of this population occurred in response to the localization of strain onto the N–S‐striking fault population. Our study demonstrates that the inheritance of a pre‐existing rift fabric can influence the geometry and growth of individual fault systems and the fault array as a whole. On the basis of observations made in this study, we present a conceptual model that highlights the influence of a pre‐existing rift fabric on fault array evolution in polyphase rifts.  相似文献   

14.
We present tectonic models of progressive basin formation in the south‐west Barents Sea derived as part of the PETROBAR project (Petroleum‐related studies of the Barents Sea region). The basin architecture developed as a multi‐stage rift preceding the creation of the sheared/transtensional margin conjugate to NE Greenland. N‐ to NNE‐striking basins, with sediment thicknesses in places exceeding 15 km, are separated by basement highs. We use two basin analysis approaches, BMT? backstripping and TecMod?time‐forward modelling, to determine stretching factors through time along the profile PETROBAR‐07. This 550 km‐long profile derived from wide‐angle reflection/refraction seismic data acquired in 2007, coincident with deep multichannel seismic reflection data. Detailed stratigraphic analysis of the reflection profile, in concert with a dense grid of 2D profiles tied to wells, provides timing and water depth constraint for the models. Velocity analysis of the wide‐angle data provides constraint on the cumulative crustal stretching. The north‐west trending cross‐section extends from continental craton, at the Varanger Peninsula, to within 16 km of the interpreted continent–ocean boundary. Rifting along the profile was episodic, with four distinct phases of basin formation during the Carboniferous, the Late Permian–Triassic, the Late Jurassic–Early Cretaceous and the Late Cretaceous–Eocene. Collectively, the basins exhibit a general trend of younging, narrowing, and deepening oceanward, suggesting a gradual focusing of rifting prior to final breakup. Cumulative stretching factors derived from BMT and TecMod correlate well with observed crustal thinning, and the two models provide uncertainty bounds for stretching factors for the separate rift phases. In contrast to orthogonally rifted margins, stretching is relatively minor immediately prior to transform breakup, with greater stretching occurring during earlier rift phases.  相似文献   

15.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

16.
Summary. Remarkable crustal features appear on the ECORS profiles carried out in northern France and the Bay of Biscay as well as on the SWAT profiles shot in the western Channel and the Celtic Sea. The most striking one is the occurrence of flat laminations in the lower crust. Dipping events and laminations are also present in the upper and lower crust, especially in the SWAT profiles. They can readily be related to tectonic events, Variscan in age, some of them identified in the field. The flat laminations in the lower crust are at first interpreted as resulting from delamination, shearing, magmatism and metamorphism at the crust-mantle transition during the Variscan orogeny. This interpretation raises some difficulty concerning the space and time correlation of the laminations with the Variscan orogeny. They seem to have been emplaced after the Permian-Triassic infilling of the Plymouth Bay basin and before the early Cretaceous opening of the Bay of Biscay. An early to middle Jurassic age is suggested, a period when large cratonic basins were formed without noticeable extension. Heat flow increase and magmatism are proposed as a second hypothesis for the formation of the lower crust laminations. Choosing between orogenic and non-orogenic causes of these laminations will require further deep seismic profiles together with good velocity determination.  相似文献   

17.
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan–Kerala Basin, coupled with a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and offshore sediment loading in order to test competing conceptual models for the development of high‐elevation passive margins. The Konkan–Kerala Basin contains an estimated 109 000 km3 of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore infer that flexure is an important component in the development of the Western Indian Margin. There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic.  相似文献   

18.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

19.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   

20.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号