共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
3.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
4.
Dissolved organic carbon (DOC) concentrations vary among headwaters, with variation typically decreasing with watershed area. We hypothesized that streamflow intermittence could be an important source of variation in DOC concentrations across a small watershed, through (a) temporal legacies of drying on organic matter accumulation and biotic communities and (b) spatial patterns of connectivity with DOC sources. To test these hypotheses, we conducted three synoptic water chemistry sampling campaigns across a 25.5‐km2 watershed in south‐eastern Idaho during early spring, late summer, and late fall. Using changepoint analysis, we found that DOC variability collapsed at a consistent location (watershed areas ~1.3 to ~1.8 km2) across seasons, which coincided with the watershed area where variability in streamflow intermittence collapsed (~1.5 km2). To test hypothesized mechanisms through which intermittence may affect DOC, we developed temporal, spatial, and spatio‐temporal metrics of streamflow intermittence and related these to DOC concentrations. Streamflow intermittence was a strong predictor of DOC across seasons, but different metrics predicted DOC depending on season. Seasonal changes in the effects of intermittence on DOC reflected seasonal changes from instream to flowpath controls. A metric that captured spatial connectivity to sources significantly predicted DOC during high flows, when DOC is typically controlled by transport. In contrast, a reach‐scale temporal metric of intermittence predicted DOC during the late growing season, when DOC is typically controlled by instream processes and when legacy effects of drying (e.g., diminished biological communities) would likely affect DOC. The effects of intermittence on DOC extend beyond temporal legacies at a point. Our results suggest that legacy effects of intermittence do not propagate downstream in this system. Instead, snapshots of spatial patterns of intermittence upstream of a reach are critical for understanding spatial patterns of DOC through connectivity to DOC sources, and these processes drive patterns of DOC even in perennial reaches. 相似文献
5.
6.
新疆博斯腾湖水体颗粒和溶解有机碳的季节变化及其来源初探 总被引:3,自引:2,他引:3
在博斯腾湖选取了13个点位,于2012年5、8、10月测定表层和底层水体中的颗粒有机碳、溶解有机碳、颗粒有机氮和叶绿素a含量.结果显示颗粒和溶解有机碳在表层水体中的浓度与底层相近.博斯腾湖水体中颗粒有机碳的季节变化十分明显,其平均浓度从春季(0.64 mg/L)到夏季(0.71 mg/L)变化不大,但在秋季变化十分显著(浓度达1.58 mg/L).其中西北湖区和湖心区颗粒有机碳的季节变化最明显,东部湖区颗粒有机碳的季节变化相对较小.博斯腾湖水体的颗粒有机碳在春、秋两季主要来自外源输入,在夏季受水体中浮游生物的影响较大.博斯腾湖水体中溶解有机碳也具有一定的季节变化,夏季浓度(平均为9.3 mg/L)略低于春、秋两季(平均为10.3 mg/L).溶解有机碳在河口区的季节变化最强,其夏季浓度明显偏低,主要是由于开都河河水的稀释作用.总体上,博斯腾湖水体中溶解有机碳浓度的变化主要受外部因素的影响. 相似文献
7.
Two long records of dissolved organic carbon (DOC) concentrations in river water were examined by a detailed time series analysis in order to shed light on the mechanisms generating observed increases in DOC concentrations across the UK. The records date back as far as 1962 and come from catchments 589 and 818 km2 in area. The DOC records were compared with others taken simultaneously for flow, pH, alkalinity, air temperature and rainfall, and in one of the catchments also for turbidity and conductivity. All records were examined by the seasonal Kendall test; frequency distributions of daily DOC measurements were examined; annual cycles were calculated, Autoregressive and impulse functions were derived for DOC against flow records. The time series analysis shows that: (i) DOC trends cannot be readily explained by trends in flow, pH, alkalinity, turbidity or conductivity; (ii) there is a significant increase in carbon flux from these catchments; (iii) maximum and minimum components of the annual distribution of daily readings both show increases in DOC, implying that DOC flux is increasing for differing hydrological pathways; (iv) increases in DOC concentrations coincide with increases in temperature, though the biggest increases in temperature are in the winter months when such increases might be expected to have less effect on DOC production; (v) change in trend, and therefore flux, was observed to occur after a severe drought in 1976. The study suggests that there are real, significant increases in carbon loss from upland peat catchments and that climate is a major driver, especially a severe drought. Severe drought triggering changes in the DOC flux might be attributed to enzymic latch mechanisms. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
AKIHIRO KANO YOKO KUNIMITSU TETSUHIRO TOGO CHIDURU TAKASHIMA FUMITO SHIRAISHI WEI WANG 《Island Arc》2011,20(2):280-293
Oxygenation of the ocean is presumed to be an important factor stimulating the evolution of multicellular animals. The appearance of the Ediacaran‐type biota (ca 575 Ma) was assigned to the aftermath of the Gaskiers glaciation (ca 580 Ma), when substantial oceanic oxygenation is believed to have started. However, several lines of evidence reveal that at least sponges evolved before this oxygenation. For understanding the first stage of animal evolution, we propose the hypothesis that Dissolved Organic Carbon (DOC) Stimulated the evolution for Animal Multicellularity (DOXAM). Recent geochemical studies of the Ediacaran sedimentary sequences have indicated that a substantial DOC mass was developed in the stratified ocean after the Marinoan glaciation (655–635 Ma), and this was supported by the inorganic and organic carbon isotope profiles of the Doushantuo Formation in South China. The DOC mass was an oxygen consumer in the water column; however, it could have provided a food source for filter‐feeding animals such as sponges and cnidarians, and established a primitive food‐web. Such an ecological structure is recognized in modern deep‐sea coral mounds. Results from the integrated ocean drilling program (IODP) Expedition 307 for a mound in northeastern Atlantic suggested that organic carbon suspended around the density boundary in the water column is the key feature to feed the heterotrophic deep‐sea coral community. Our hypothesis is consistent with the fact that the two most primitive animal phyla (Porifera and Cnidaria) are filter feeders. The evolution of filter feeding ecosystems removed the DOC mass and may have contributed to ocean oxygenation in the terminal Neoproterozoic when animal evolution passed into the second stage, with the appearance of bilaterians. 相似文献
9.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment. 相似文献
10.
To evaluate the influence of hydrological processes on dissolved organic carbon (DOC) dynamics in a forested headwater catchment, DOC concentration was observed along the flow path from rainfall to stream water via throughfall, soil water, groundwater, and spring water for 4 years, and DOC flux through the catchment was calculated. The spatial and temporal variations in DOC concentration and flux were compared with physical hydrological observations and the mean residence time of water. In the upslope soil layer, DOC concentrations were not significantly correlated with water fluxes, suggesting that DOC concentrations were not strictly controlled by water fluxes. In the upslope perennial groundwater, DOC concentration was affected by the change in the amount of microbial degradation of DOC produced by changes in the mean residence time of water. In stream water, the temporal variation in DOC concentration was usually affected by changes in DOC concentration of the inflow component via vertical infiltration from above the perennial groundwater. During dry periods, however, the component from inflow via vertical infiltration was negligible and DOC in the upslope perennial groundwater became the major component of stream water DOC. The temporal variation in stream water DOC concentration during baseflow was affected by rainfall patterns over several preceding months. Therefore, records of rainfall over several preceding months are one of the most important factors for predicting changes in DOC concentration on a catchment scale. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
11.
Andy Baker 《水文研究》2002,16(16):3203-3213
There is a need to be able to differentiate the dissolved organic matter (DOM) fraction in river waters. Research in the 1970s and 1980s has attempted to utilize both absorbance and fluorescence to distinguish between DOM fractions in river waters, but both were limited by the available technology. Total organic carbon content has, therefore, been widely used as a standard method of measuring DOM concentration, although it has little power to differentiate DOM fractions. Recent advances in fluorescence spectrophotometry enable rapid and optically precise analysis of DOM. Here, we show how a combination of both fluorescence and absorbance can be used to discriminate statistically between spatial variations of DOM in tributaries in a small catchment of the Ouseburn, NE England. The results of the discriminant analysis suggest that about 70% of the samples can be correctly classified to its tributary. Discriminant function 1 explains 60·8% of the variance in the data and the fulvic‐like fluorescence intensity has the largest absolute correlation within this function; discriminant function 2 explains a further 21·5% of the variance and the fulvic‐like fluorescence emission wavelength has the largest absolute correlation within this function. The discriminant analysis does not correctly classify all tributaries every time, and successfully discriminates between the different tributaries 70% of the time. Occasions when the tributary waters are less well discriminated are due to either episodic pollution events (at two sites) or due to tributaries that have strong seasonal trends in spectrophotometric parameters, which allows the sites to be misclassified. Results suggest that spectrophotometric techniques have considerable potential in the discrimination of DOM in rivers. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
12.
We identify and assess the relative importance of the principal factors influencing the release of dissolved organic carbon (DOC) and dissolved forms of nitrogen (N) from a small upland headwater dominated by podzolic soils during a sequence of autumn runoff events. We achieve this by subjecting high‐resolution hydrometeorological and hydrochemical data to an R‐mode principal component factor analysis and a stepwise multivariate regression analysis. We find that the release of DOC and N is influenced by four principal factors, namely event magnitude, soil water flow through the Bs horizon, the length of time since the soil profile was last flushed, and rewetting of the H horizon. The release of DOC and dissolved organic nitrogen (DON) is most strongly influenced by the combination of event magnitude and soil water flow through the Bs horizon, and to a lesser extent by the length of time since the soil profile was last flushed. Rewetting of the H horizon also influences the release of DOC, but this is not the case for DON. The release of nitrate (NO3‐N) is most strongly influenced by the combination of the length of time since the soil profile was last flushed and rewetting of the H horizon, and to a lesser extent by event magnitude. Soil water flow through the Bs horizon does not influence the release of NO3‐N. We argue that the mechanisms by which the above factors influence the release of DOC and N are probably strongly associated with moisture‐dependent biological activity, which governs the turnover of organic matter in the soil and limits the availability of NO3‐N in the soil for leaching. We conclude that the release of DOC and N from upland headwaters dominated by podzolic soils is largely controlled by the variable interaction of hydrometeorological factors and moisture‐dependent biological processes, and that a shift in climate towards drier summers and wetter winters may result in the release of DOC and N becoming increasingly variable and more episodic in the future. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
13.
《Limnologica》2016
Rising concentrations of dissolved organic carbon (DOC) are negatively affecting the water quality in several drinking water reservoirs. The presence of beaver dams can influence surface water quality on a catchment scale. In recent years, beavers have been re-introduced in numerous locations in Central Europe. We investigated whether the presence of beaver dams in the catchment of a German drinking water reservoir impacts DOC quantity and quality in the streams entering the Wehebach reservoir in Germany.By comparing water quality upstream and downstream of beaver dams during three low discharge situations we did not find a significant effect of dams both on DOC quantity and quality. The analysis of long term monitoring data at the gauges showed that beaver dams had a negligible effect on the DOC load to the reservoir. DOC quantity was closely linked to iron concentration in the streams. Co-precipitation with iron minerals was an effective process removing DOC from the stream-water. By analyzing fluorescence excitation emission indices we show that beaver dams did not have a clear effect on DOC quality. We conclude that the presence of beaver dams has only small effects on water quality and is not a problem for water quality in the downstream drinking water reservoir. 相似文献
14.
High demand for horticultural peat has increased peatland drainage and peat extraction in Canada. The hydrology and carbon cycling of these cutover peatlands is greatly altered, necessitating active restoration efforts to permit the regeneration of Sphagnum mosses and the re‐establishment of natural peatland function. The effect of peatland extraction and restoration on the export of dissolved organic carbon (DOC) was examined for three successive seasons (May to October, 1999 to 2001) at two different sites (cutover and restored) in eastern Québec. A shift towards higher DOC concentrations was observed following peatland extraction (maximum: 182·6 mg L?1) and concentrations remained high post‐restoration (maximum: 191·0 mg L?1). The cutover site exported more DOC than the restored site in all three study seasons. The highest exports occurred during the wettest year (1999), with cutover and restored site export of 10·3 and 4·8 g m?2, respectively. In 2000, 8·5 g C m?2 was released from the cutover site, while the restored site released less than half that amount (3·4 g C m?2). In 2001, the restored site released about the same amount of DOC as in the previous year (3·5 g C m?2), while the cutover site load dropped to 6·2 g C m?2. Both sites were net exporters of DOC in all years. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
Dynamics of dissolved organic carbon after a cyanobacterial bloom in hypereutrophic Lake Taihu (China) 总被引:5,自引:0,他引:5
Linlin Ye Xiao Shi Xiaodong Wu Min Zhang Yang Yu Daming Li Fanxiang Kong 《Limnologica》2011,41(4):382-388
To establish the influence of the cyanobacterial bloom collapse on the characteristics of dissolved organic carbon (DOC) in Lake Taihu, high-molecular-weight dissolved organic matter (HMW-DOM), with sizes between 1 kDa and 0.5 μm, were collected using cross-flow ultrafiltration, from three different eutrophic regions. Isolated HMW-DOM was further characterized by atomic carbon to nitrogen ratio and neutral sugars composition by gas chromatography and mass spectrometry. The results indicated that the cyanobacterial cell lysis induced by nitrate depletion is the likely mechanism for DOC release. The relatively high DOC level was associated with the high chlorophyll a concentration in Meiliang Bay, one of the most eutrophic bays in the northern part of the lake. However, no significant correlations were observed between chlorophyll a concentration and HMW-DOC concentration during the demise of the cyanobacterial bloom in Lake Taihu. No significant differences were found in the HMW-DOC concentration among the three sampling sites, which were selected to represent different eutrophic status. However, a significant difference in the HMW-DOC concentration was found between October 2009 and January 2010 in all three sampling sites (p = 0.02). The HMW-DOC release may be attributed to the cyanobacterial cell lysis after the peak of summer bloom. The similarity in neutral sugar composition between the HMW-DOM and cyanobacterial exopolysaccharides suggests that the cyanobacterial bloom is the source of HMW-DOM. However, the significant correlation between the carbon to nitrogen ratio in HMW-DOM and chlorophyll a concentration was only observed in Meiliang Bay, which implies that apart from the cyanobacteria-derived DOC, a fraction of DOC was from riverine input. The decline of the cyanobacterial bloom also changed the overall DOM pool, leading to a shift in the component of HMW-DOM from a C-enriched material to an N-enriched material, as revealed by the variation in the carbon to nitrogen ratios. Overall, these results demonstrate that the quantitative and qualitative DOM is affected by the post-cyanobacterial bloom in Lake Taihu. 相似文献
16.
Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave,China 总被引:1,自引:0,他引:1
To detect the causal relationship between cave drip waters and stalagmite laminae, which have been used as a climate change proxy, three drip sites in Beijing Shihua Cave were monitored for discharge and dissolved organic carbon (DOC). Drip discharges and DOC were determined at 0 to 14‐day intervals over the period 2004–2006. Drip discharges show two types of response to surface precipitation variations: (1) a rapid response; and (2) a time‐lagged response. Intra‐annual variability in drip discharge is significantly higher than inter‐annual variability. The content of DOC in all drip waters varies inter‐ and intra‐annually and has good correlation with drip water discharge at the rapid response sites. High DOC was observed in July and August in the three years observed. The flushing of soil organic matter is dependent upon the intensity of rain events. The DOC content of drip water increases sharply above a threshold rainfall intensity (>50 mm d?1) and shows several pulses corresponding with intense rain events (>25 mm d?1). The DOC content was lower and less variable during the dry period than during the rainy period. The shape of DOC peak also varies from year to year as it is influenced by the intensity and frequency of rainfall. The different drip sites show marked differences in DOC response, which are dominated by hydrological behaviour linked to the recharge of the soil and karst micro‐fissure/porosity network. The results explain why not all stalagmite laminae are consistent with climate changes and suggest that the structure of the rainy season events could be preserved in speleothems. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Hydrological events transport large proportions of annual or seasonal dissolved organic carbon (DOC) loads from catchments to streams. The timing, magnitude and intensity of these events are very sensitive to changes in temperature and precipitation patterns, particularly across the boreal region where snowpacks are declining and summer droughts are increasing. It is important to understand how landscape characteristics modulate event-scale DOC dynamics in order to scale up predictions from sites across regions, and to understand how climatic changes will influence DOC dynamics across the boreal forest. The goal of this study was to assess variability in DOC concentrations in boreal headwater streams across catchments with varying physiographic characteristics (e.g., size, proportion of wetland) during a range of hydrological events (e.g., spring snowmelt, summer/fall storm events). From 2016 to 2017, continuous discharge and sub-daily chemistry grab samples were collected from three adjacent study catchments located at the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Catchment differences were more apparent in summer and fall events and less apparent during early spring melt events. Hysteresis analysis suggested that DOC sources were proximal to the stream for all events at a catchment dominated by a large wetland near the outlet, but distal from the stream at the catchments that lacked significant wetland coverage during the summer and fall. Wetland coverage also influenced responses of DOC export to antecedent moisture; at the wetland-dominated catchment, there were consistent negative relationships between DOC concentrations and antecedent moisture, while at the catchments without large wetlands, the relationships were positive or not significant. These results emphasize the utility of sub-daily sampling for inferring catchment DOC transport processes, and the importance of considering catchment-specific factors when predicting event-scale DOC behaviour. 相似文献
18.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
20.
《Limnologica》2021
Dissolved organic carbon (DOC) is one of the most abundant fractions of organic matter in aquatic systems and plays an important role in the dynamics of aquatic environments, controlling both the penetration and the underwater light radiation climate. DOC can be photodegraded by light, thus facilitating biodegradation, especially in regions where the incidence of solar radiation is high, such as higher altitudes and lower latitudes. This study quantified the photodegradation of dissolved organic material in a natural tropical lake surrounded by native forests (Brazilian Atlantic Forest) through two experiments: i) the first experiment exposed concentrated autochthonous, allochthonous, and lake water to in situ solar radiation; ii) this experiment also exposed the same organic material to artificial UV radiation in an incubator under controlled conditions. The quality and quantity of dissolved organic carbon were measured using indices based on carbon absorbance and fluorescence spectrum. In the in situ experiment, it was observed that the DOC degradation profile of the concentrated allochthonous and autochthonous organic material were distinct from each other in the absorbance indices, and the lake water mostly resembled the latter one. On the other hand, we did not see evidence of any significant difference among treatments in the laboratory experiment. An increase in the SR index and a concomitant decrease in the fluorescence of humic compounds and SUVA254 over time were observed. In both experiments, the amount of degraded organic material over time was low and some possible explanations are discussed. 相似文献