首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We propose a methodology, called multilevel local–global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or transmissibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local–global (LG) upscaling for permeability or transmissibility [7], along with adaptivity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.  相似文献   

3.
油藏精细地质模型网格粗化算法及其效果   总被引:1,自引:0,他引:1  
在前人研究基础上, 根据DP(Dykstra-Parsons)系数能定量评价储层非均质性, 微网格块的渗透率值粗化后, 其等效渗透率的上、下限(Cmin、Cmax)能反映渗透率的各向异性的特点, 提出了一种运算速度快和相对有效的网格粗化算法。该算法能考虑到储层非均质性对不同方向渗透率值的影响, 且求解过程相对简单。应用该方法对鄂尔多斯盆地中部某油藏的陆相储层的精细地质模型进行了网格粗化计算, 然后在粗化后的模型上进行油藏数值模拟研究, 同时针对研究区地质背景和产出流体微可压缩的物性特征, 首次利用流线模拟器对精细地质模型进行了油藏数值模拟研究, 并以此结果为标准, 对该网格粗化算法时效性进行了系统评价。分析表明, 该算法具有较快的计算速度和较高的可靠性, 是解决储层非均质强、物性差的陆相成因油藏精细油藏数值模拟的一种行之有效的手段。   相似文献   

4.
Modern geostatistical techniques allow the generation of high-resolution heterogeneous models of hydraulic conductivity containing millions to billions of cells. Selective upscaling is a numerical approach for the change of scale of fine-scale hydraulic conductivity models into coarser scale models that are suitable for numerical simulations of groundwater flow and mass transport. Selective upscaling uses an elastic gridding technique to selectively determine the geometry of the coarse grid by an iterative procedure. The geometry of the coarse grid is built so that the variances of flow velocities within the coarse blocks are minimum. Selective upscaling is able to handle complex geological formations and flow patterns, and provides full hydraulic conductivity tensor for each block. Selective upscaling is applied to a cross-bedded formation in which the fine-scale hydraulic conductivities are full tensors with principal directions not parallel to the statistical anisotropy of their spatial distribution. Mass transport results from three coarse-scale models constructed by different upscaling techniques are compared to the fine-scale results for different flow conditions. Selective upscaling provides coarse grids in which mass transport simulation is in good agreement with the fine-scale simulations, and consistently superior to simulations on traditional regular (equal-sized) grids or elastic grids built without accounting for flow velocities.  相似文献   

5.
Multiscale mixed/mimetic methods on corner-point grids   总被引:1,自引:0,他引:1  
Multiscale simulation is a promising approach to facilitate direct simulation of large and complex grid models for highly heterogeneous petroleum reservoirs. Unlike traditional simulation, approaches based on upscaling/downscaling, multiscale methods seek to solve the full flow problem by incorporating subscale heterogeneities into local discrete approximation spaces. We consider a multiscale formulation based on a hierarchical grid approach, where basis functions with subgrid resolution are computed numerically to correctly and accurately account for subscale variations from an underlying (fine-scale) geomodel when solving the global flow equations on a coarse grid. By using multiscale basis functions to discretise the global flow equations on a (moderately sized) coarse grid, one can retain the efficiency of an upscaling method and, at the same time, produce detailed and conservative velocity fields on the underlying fine grid. For pressure equations, the multiscale mixed finite-element method (MsMFEM) has been shown to be a particularly versatile approach. In this paper, we extend the method to corner-point grids, which is the industry standard for modelling complex reservoir geology. To implement MsMFEM, one needs a discretisation method for solving local flow problems on the underlying fine grids. In principle, any stable and conservative method can be used. Here, we use a mimetic discretisation, which is a generalisation of mixed finite elements that gives a discrete inner product, allows for polyhedral elements, and can (easily) be extended to curved grid faces. The coarse grid can, in principle, be any partition of the subgrid, where each coarse block is a connected collection of subgrid cells. However, we argue that, when generating coarse grids, one should follow certain simple guidelines to achieve improved accuracy. We discuss partitioning in both index space and physical space and suggest simple processing techniques. The versatility and accuracy of the new multiscale mixed methodology is demonstrated on two corner-point models: a small Y-shaped sector model and a complex model of a layered sedimentary bed. A variety of coarse grids, both violating and obeying the above mentioned guidelines, are employed. The MsMFEM solutions are compared with a reference solution obtained by direct simulation on the subgrid.  相似文献   

6.
Subsurface flows are affected by geological variability over a range of length scales. The modeling of well singularity in heterogeneous formations is important for simulating flow in aquifers and petroleum reservoirs. In this paper, two approaches in calculating the upscaled well index to capture the effects of fine scale heterogeneity in near-well regions are presented and applied. We first develop a flow-based near-well upscaling procedure for geometrically flexible grids. This approach entails solving local well-driven flows and requires the treatment of geometric effects due to the nonalignment between fine and coarse scale grids. An approximate coarse scale well model based on a well singularity analysis is also proposed. This model, referred to as near-well arithmetic averaging, uses only the fine scale permeabilities at well locations to compute the coarse scale well index; it does not require solving any flow problems. These two methods are systematically tested on three-dimensional models with a variety of permeability distributions. It is shown that both approaches provide considerable improvement over a simple (arithmetic) averaging approach to compute the coarse scale well index. The flow-based approach shows close agreement to the fine scale reference model, and the near-well arithmetic averaging also offers accuracy for an appropriate range of parameters. The interaction between global flow and near-well upscaling is also investigated through the use of global fine scale solutions in near-well scale-up calculations.  相似文献   

7.
8.
9.
Detailed reservoir models routinely contain 106–108 grid blocks. These models often cannot be used directly in a reservoir simulation because of the time and memory required for solving the pressure grid on the fine grid. We propose a nested gridding technique that efficiently obtains an approximate solution for the pressure field. The domain is divided into a series of coarse blocks, each containing several fine cells. Effective mobilities are computed for each coarse grid block and the pressure is then found on the coarse scale. The pressure field within each coarse block is computed using flux boundary conditions obtained from the coarse pressure solution. Streamline-based simulation is used to move saturations forward in time. We test the method for a series of example waterflood problems and demonstrate that the method can give accurate estimates of oil production for large 3D models significantly faster than direct simulation using streamlines on the fine grid, making the method overall approximately up to 1,000 times faster than direct conventional simulation.  相似文献   

10.
Wells are seldom modeled explicitly in large scale finite difference reservoir simulations. Instead, the well is coupled to the reservoir through the use of a well index, which relates wellbore flow rate and pressure to grid block quantities. The use of an accurate well index is essential for the detailed modeling of nonconventional wells; i.e., wells with an arbitrary trajectory or multiple branches. The determination of a well index for such problems is complicated, particularly when the simulation grid is irregular or unstructured. In this work, a general framework for the calculation of accurate well indices for general nonconventional wells on arbitrary grids is presented and applied. The method entails the use of an accurate semianalytical well model based on Green's functions as a reference single phase flow solution. This result is coupled with a finite difference calculation to provide an accurate well index for each grid block containing a well segment. The method is demonstrated on a number of homogeneous example cases involving deviated, horizontal and multilateral wells oriented skew to the grid. Both Cartesian and globally unstructured multiblock grids are considered. In all these cases, the method is shown to provide results that are considerably more accurate compared to results using standard procedures. The method is also applied to heterogeneous problems involving horizontal wells, where it is shown to be capable of approximating the effects of subgrid heterogeneity in coarse finite difference models.  相似文献   

11.
Point scale studies in different settings of glacial geology show a large local variation of redox conditions. There is a need to develop an upscaling methodology for catchment scale models. This paper describes a study of field-scale heterogeneity of redox-interfaces in a till aquitard within an area of 600?×?600 m. The results showed significant variation of the depths to the redox-interface and thickness of the aquitard. Nitrate was present above the redox-interface but reduced to non-detectable levels a few metres below the interface. An upscaling approach for an area of 92 km2 is proposed. Two models are proposed to predict the depth to the redox-interface in the aquitard and the resulting nitrate recharge concentrations to an underlying aquifer. The first model assumes that the depth to the redox-interface reflects the hydraulic head in the aquitard, and the second model assumes that the depth of the redox-interface is randomly distributed according to a log-normal probability distribution function. The upscaling approach using the random redox model estimated recharge concentrations comparable to the observed concentration in the underlying aquifer. The presented upscaling approach is applicable in distributed catchment models where sub-grid variability cannot be represented by the large grids.  相似文献   

12.
A key ingredient in simulation of flow in porous media is accurate determination of the velocities that drive the flow. Large‐scale irregularities of the geology (faults, fractures, and layers) suggest the use of irregular grids in simulation. This paper presents a control‐volume mixed finite element method that provides a simple, systematic, easily implemented procedure for obtaining accurate velocity approximations on irregular (i.e., distorted logically rectangular) block‐centered quadrilateral grids. The control‐volume formulation of Darcy’s law can be viewed as a discretization into element‐sized “tanks” with imposed pressures at the ends, giving a local discrete Darcy law analogous to the block‐by‐block conservation in the usual mixed discretization of the mass‐conservation equation. Numerical results in two dimensions show second‐order convergence in the velocity, even with discontinuous anisotropic permeability on an irregular grid. The method extends readily to three dimensions.  相似文献   

13.
Large scale geomechanical simulations are being increasingly used to model the compaction of stress dependent reservoirs, predict the long term integrity of under‐ground radioactive waste disposals, and analyse the viability of hot‐dry rock geothermal sites. These large scale simulations require the definition of homogenous mechanical properties for each geomechanical cell whereas the rock properties are expected to vary at a smaller scale. Therefore, this paper proposes a new methodology that makes possible to define the equivalent mechanical properties of the geomechanical cells using the fine scale information given in the geological model. This methodology is implemented on a synthetic reservoir case and two upscaling procedures providing the effective elastic properties of the Hooke's law are tested. The first upscaling procedure is an analytical method for perfectly stratified rock mass, whereas the second procedure computes lower and upper bounds of the equivalent properties with no assumption on the small scale heterogeneity distribution. Both procedures are applied to one geomechanical cell extracted from the reservoir structure. The results show that the analytical and numerical upscaling procedures provide accurate estimations of the effective parameters. Furthermore, a large scale simulation using the homogenized properties of each geomechanical cell calculated with the analytical method demonstrates that the overall behaviour of the reservoir structure is well reproduced for two different loading cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.  相似文献   

15.
A method for multiscale parameter estimation with application to reservoir history matching is presented. Starting from a given fine-scale model, coarser models are generated using a global upscaling technique where the coarse models are tuned to match the solution of the fine model. Conditioning to dynamic data is done by history-matching the coarse model. Using consistently the same resolution both for the forward and inverse problems, this model is successively refined using a combination of downscaling and history matching until model-matching dynamic data are obtained at the finest scale. Large-scale corrections are obtained using fast models, which, combined with a downscaling procedure, provide a better initial model for the final adjustment on the fine scale. The result is thus a series of models with different resolution, all matching history as good as possible with this grid. Numerical examples show that this method may significantly reduce the computational effort and/or improve the quality of the solution when achieving a fine-scale match as compared to history-matching directly on the fine scale.  相似文献   

16.
Large-scale flow models constructed using standard coarsening procedures may not accurately resolve detailed near-well effects. Such effects are often important to capture, however, as the interaction of the well with the formation can have a dominant impact on process performance. In this work, a near-well upscaling procedure, which provides three-phase well-block properties, is developed and tested. The overall approach represents an extension of a recently developed oil–gas upscaling procedure and entails the use of local well computations (over a region referred to as the local well model (LWM)) along with a gradient-based optimization procedure to minimize the mismatch between fine and coarse-scale well rates, for oil, gas, and water, over the LWM. The gradients required for the minimization are computed efficiently through solution of adjoint equations. The LWM boundary conditions are determined using an iterative local-global procedure. With this approach, pressures and saturations computed during a global coarse-scale simulation are interpolated onto LWM boundaries and then used as boundary conditions for the fine-scale LWM computations. In addition to extending the overall approach to the three-phase case, this work also introduces new treatments that provide improved accuracy in cases with significant flux from the gas cap into the well block. The near-well multiphase upscaling method is applied to heterogeneous reservoir models, with production from vertical and horizontal wells. Simulation results illustrate that the method is able to accurately capture key near-well effects and to provide predictions for component production rates that are in close agreement with reference fine-scale results. The level of accuracy of the procedure is shown to be significantly higher than that of a standard approach which uses only upscaled single-phase flow parameters.  相似文献   

17.
Distance-based stochastic techniques have recently emerged in the context of ensemble modeling, in particular for history matching, model selection and uncertainty quantification. Starting with an initial ensemble of realizations, a distance between any two models is defined. This distance is defined such that the objective of the study is incorporated into the geological modeling process, thereby potentially enhancing the efficacy of the overall workflow. If the intent is to create new models that are constrained to dynamic data (history matching), the calculation of the distance requires flow simulation for each model in the initial ensemble. This can be very time consuming, especially for high-resolution models. In this paper, we present a multi-resolution framework for ensemble modeling. A distance-based procedure is employed, with emphasis on the rapid construction of multiple models that have improved dynamic data conditioning. Our intent is to construct new high-resolution models constrained to dynamic data, while performing most of the flow simulations only on upscaled models. An error modeling procedure is introduced into the distance calculations to account for potential errors in the upscaling. Based on a few fine-scale flow simulations, the upscaling error is estimated for each model using a clustering technique. We demonstrate the efficiency of the method on two examples, one where the upscaling error is small, and another where the upscaling error is significant. Results show that the error modeling procedure can accurately capture the error in upscaling, and can thus reproduce the fine-scale flow behavior from coarse-scale simulations with sufficient accuracy (in terms of uncertainty predictions). As a consequence, an ensemble of high-resolution models, which are constrained to dynamic data, can be obtained, but with a minimum of flow simulations at the fine scale.  相似文献   

18.
The increasing use of unstructured grids for reservoir modeling motivates the development of geostatistical techniques to populate them with properties such as facies proportions, porosity and permeability. Unstructured grids are often populated by upscaling high-resolution regular grid models, but the size of the regular grid becomes unreasonably large to ensure that there is sufficient resolution for small unstructured grid elements. The properties could be modeled directly on the unstructured grid, which leads to an irregular configuration of points in the three-dimensional reservoir volume. Current implementations of Gaussian simulation for geostatistics are for regular grids. This paper addresses important implementation details involved in adapting sequential Gaussian simulation to populate irregular point configurations including general storage and computation issues, generating random paths for improved long range variogram reproduction, and search strategies including the superblock search and the k-dimensional tree. An efficient algorithm for computing the variogram of very large irregular point sets is developed for model checking.  相似文献   

19.
Fast 3D Reservoir Simulation and Scale Up Using Streamtubes   总被引:1,自引:0,他引:1  
This paper presents an implementation of a semianalytical method for oil recovery calculation in heterogeneous reservoirs that is both fast and accurate. The method defines streamline paths based on a conventional single-phase incompressible flow calculation. By calculating the time-of-flight for a particle along a streamline and assigning a volumetric flux to each streamline, the cumulative pore volume of a streamtube containing the streamline can be calculated. Subsequently, the streamtube geometries are kept constant and the effects of the time varying mobility distribution in two-phase flow are accounted for by varying the flow rate in each streamtube, based on fluid resistance changes along the streamtube. Oil recovery calculations are then done based on the 1D analytical Buckley–Leverett solution. This concept makes the method extremely fast and easy to implement, making it ideal to simulate large reservoirs generated by geostatiscal methods. The simulation results of a 3D heterogeneous reservoir are presented and compared with those of other simulators. The results shows that the new simulator is much faster than a traditional finite difference simulator, while having the same accuracy. The method also naturally handles the upscaling of absolute and relative permeability. We make use of these upscaling abilities to generate a coarse curvilinear grid that can be used in conventional simulators with a great advantage over conventional upscaled Cartesian grids. This paper also shows an upscaling example using this technique.  相似文献   

20.
For the past 10 years or so, a number of so-called multiscale methods have been developed as an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these methods is to construct a set of prolongation operators that map between unknowns associated with cells in a fine grid holding the petrophysical properties of the geological reservoir model and unknowns on a coarser grid used for dynamic simulation. The prolongation operators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling methods, and can be used to construct a reduced coarse-scale system of flow equations that describe the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly accounted for in a systematic manner. Among all multiscale formulations discussed in the literature, the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promising. This method has been implemented in a commercially available simulator and has three main advantages. First, the input grid and its coarse partition can have general polyhedral geometry and unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is formulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow model for which one can isolate a pressure equation. We discuss numerical challenges posed by contemporary geomodels and report a number of validation cases showing that the MsRSB method is an efficient, robust, and versatile method for simulating complex models of real reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号