首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
沈步明  邓万明 《岩石学报》1996,12(4):499-513
新疆库地蛇绿岩中的变质橄榄岩具有呈网络状的二级粒序结构。第一级粒序由发育地幔塑性变形组构的粗粒橄榄石、斜方辉石及少量单斜辉石和尖晶石组成。第二级粒序由充填在第一级粒序颗粒之间的微粒矿物组成,在这种粒序中发现了四种含透闪石的矿物组合,它们是由残余地幔岩经过地幔交代作用和部分熔融作用形成的。同时还研究了铬铁矿中的矿物化学组成和成因。在此基础上,提出了上地幔岩初始熔体和部分熔融特征表述的设想。  相似文献   

2.
3.
沈步明  邓万明 《岩石学报》1996,12(4):499-513
新疆库地蛇绿岩中的变质橄榄岩具有呈网络状的二级粒序结构。第一级粒序由发育地幔塑性变形组构的粗粒橄榄石、斜方辉石及少量单斜辉石和尖晶石组成。第二级粒序由充填在第一级粒序颗粒之间的微粒矿物组成,在这种粒序中发现了四种含透闪石的矿物组合,它们是由残余地幔岩经过地幔交代作用和部分熔融作用形成的。同时还研究了铬铁矿中的矿物化学组成和成因。在此基础上,提出了上地幔岩初始熔体和部分熔融特征表述的设想  相似文献   

4.
5.
6.
本文用数学方法讨论了地幔平衡部分熔融与岩浆分离结晶关系式随D_A变化的相对大小,进而对这两种成因作出判别。最后对最优判别元素的选择作了讨论。  相似文献   

7.
对幔源岩中流体组成的不同测定方法评价   总被引:9,自引:1,他引:9  
张铭杰  王先彬 《地质论评》2000,46(2):160-166
本文对比了上前广泛用于幔源岩中流体组成测定的不同实验方法,讨论了每种方法的优点和适用范围。根据地幔流体所处特殊的地幔环境(高温高压),认为分步加热质谱法测定的结果较全面地代表了幔源岩中流体的真实组成;在实验过程中进行有效的样品处理,采用合理的实验装置和系统本底,对获取可靠的数据至关重要;且通过控制加热温度可对不同类型的流体组分分别进行研究。  相似文献   

8.
选取土壤、水系沉积物、岩石、超基性岩、黏土等标准物质,应用混合溶剂与样品质量比为14:1的高稀释比方法熔融制备测试样品,拟合校准曲线,建立X射线荧光光谱(XRF)同时测定硅酸盐岩石样品中18种组分(SiO2、Al2O3、TFe2O3、MgO、CaO、K2O、Na2O、TiO2、BaO、MnO、P2O5、Cr2O3、V2O5、Rb、Sr、Zr、Cu、Ni)的快速分析方法.应用帕纳科Eagon2全自动高频电感熔样机,称取7.0000 g(45Li2B4O7+10LiBO2+5LiF)混合溶剂与0.5000 g样品混合均匀,分别加入氧化剂饱和硝酸铵溶液2滴,脱模剂饱和溴化锂溶液4滴,于700℃先预氧化4 min,再1 120℃熔融9 min制备样片,自然冷却至室温.此熔样方法能保证样品中待测组分熔化完全,并制得表面光滑平整的样片.用国家标准物质验证,测试结果的准确度和精密度均符合《地质矿产实验室测试质量管理规范》(DZ/T 0130-2006)要求.  相似文献   

9.
利用高温高压的实验分别对辉长岩进行差应力和温度与岩石熔融程度测试,并进一步分析讨论差应力和温度等岩石熔融程度的关系。动、静态的实验结论表明:(1)静态熔融条件下,岩石的熔融程度主要受温度的影响并且岩石熔融程度与温度呈正相关关系;(2)在保持一定温度不变的动态熔融条件下,岩石的熔融程度还与差应力呈正相关的关系;(3)差应力可以降低熔点,促使熔融提前发生并且使熔融强度增大;(4)差应力对岩石的熔融具有明显的控制作用;(5)以700℃为基准,差应力每增加5MPa其带来的影响与温度升高50℃的效果相当;(6)基性岩石的熔融对差应力的敏感程度最高。该实验结果还表明在研究岩石深熔作用时尤其是在构造作用较强烈地区要考虑差应力的影响因素。  相似文献   

10.
地幔岩包体中斜方辉石的GOD化现象   总被引:2,自引:2,他引:2  
对我国东部四个地点碱性玄武岩中地幔岩样品的研究分析表明,地幔岩包体被带上来的过程中,斜方辉石比单斜辉石更易发生部分熔融,而形成熔体玻璃(Glass)、橄榄石(Olivine)和铬透辉石(ChromeDipside)集合体,此作用可称为GOD化。GOD化沿包体边部最发育,向内逐渐减弱,以至消失。当玻璃极富K2O时,出现强烈GOD化。在强烈GOD化外面的寄主岩石中,还形成销沸石和/或方沸石聚集体。斜方辉石的GOD化不仅是由于升温降压而导致的不一致熔融所致,而且还伴有物质的交换(带入CaO+Na2O+K2O,带出SiO2+MgO)。  相似文献   

11.
Experiments on partial melting of mantle lherzolite have been realized at 0.6 and 1.0 GPa and the chemical compositional variations of melts during different melting stages have been first discussed. The results show that the trends of variations in SiO2, CaO, Al2O3, Na2O and TiO2 are different at different melting stages. The melts produced at lower pressure are richer in SiO2 than those at higher pressure. The mantle-derived silica-rich fluids (silicate melts) are polygenetic, but the basic and intermediate-acid silicate melts in mantle peridotite xenoliths from the same host rocks, which have equivalent contents of volatile and alkali components and different contents of other components, should result from in-situ (low-degree) partial melting of mantle peridotite under different conditions (e.g. at different depths, with introduction of C-O-H fluids or in the presence of metasomatic minerals). The intermediate-acid melts may be the result of partial melting (at lower pressure) Opx + Sp + K-Na-rich fluid±(Amphi)±(Phlog)= Ol+melt.But the intermediate-acid magmas cannot be produced from the partial melting of normal mantle peridotite unless the crustal materials are introduced to some extent.  相似文献   

12.
Experiments on partial melting of mantle lherzolite have been realized at 0.6 and 1.0 GPa and the chemical compositional variations of melts during different melting stages have been first discussed. The results show that the trends of variations in SiO2, CaO, Al2O3, Na2O and TiO2 are different at different melting stages. The melts produced at lower pressure are richer in SiO2 than those at higher pressure. The mantle-derived silica-rich fluids (silicate melts) are polygenetic, but the basic and intermediate-acid silicate melts in mantle peridotite xenoliths from the same host rocks, which have equivalent contents of volatile and alkali components and different contents of other components, should result from in-situ (low-degree) partial melting of mantle peridotite under different conditions (e.g. at different depths, with introduction of C-O-H fluids or in the presence of metasomatic minerals). The intermediate-acid melts may be the result of partial melting (at lower pressure) Opx + Sp + K-Na-rich f  相似文献   

13.
Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg/(Mg+Fe~(2+) ratio of silicate minerals in order of lherzolite→harzburgite→dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i. e. the increase in Chromium. The above-mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture→melted residual texture, symplectic texture and clastophyritic texture→equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.  相似文献   

14.
Abstract Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg / (Mg+Fe2+) ratio of silicate minerals in order of lherzolite?harzburgite?dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i.e. the increase in Chromium. The above- mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture? melted residual texture, symplectic texture and clastophyritic texture? equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.  相似文献   

15.
High-pressure Partial Melting of Mafic Lithologies in the Mantle   总被引:15,自引:2,他引:15  
We review experimental phase equilibria associated with partialmelting of mafic lithologies (pyroxenites) at high pressuresto reveal systematic relationships between bulk compositionsof pyroxenite and their melting relations. An important aspectof pyroxenite phase equilibria is the existence of the garnet–pyroxenethermal divide, defined by the enstatite–Ca-Tschermakspyroxene–diopside plane in CaO–MgO–Al2O3–SiO2projections. This divide appears at pressures above 2 GPa inthe natural system where garnet and pyroxenes are the principalresidual phases in pyroxenites. Bulk compositions that resideon either side of the divide have distinct phase assemblagesfrom subsolidus to liquidus and produce distinct types of partialmelt ranging from strongly nepheline-normative to quartz-normativecompositions. Solidus and liquidus locations are little affectedby the location of natural pyroxenite compositions relativeto the thermal divide and are instead controlled chiefly bybulk alkali contents and Mg-numbers. Changes in phase volumesof residual minerals also influence partial melt compositions.If olivine is absent during partial melting, expansion of thephase volume of garnet relative to clinopyroxene with increasingpressure produces liquids with high Ca/Al and low MgO comparedwith garnet peridotite-derived partial melts. KEY WORDS: experimental petrology; mantle heterogeneity; partial melting; phase equilibrium; pyroxenite  相似文献   

16.
大麻坪地区二辉橄榄岩部分熔融实验研究   总被引:1,自引:0,他引:1  
本文以采自大麻坪地区汉诺坝玄武岩中的二辉橄榄岩包体为初始实验物料,在压力1.0~3.0 GPa、温度1350~1550℃条件下进行了部分熔融实验,对实验产物进行了岩相学研究和电子探针成分分析。二辉橄榄岩在1350℃开始熔融,在实验的温度压力范围内,熔融程度为10%~30%。随熔融程度的升高,部分熔融后残余岩石倾向于向富镁、低铁、低钙、低硅的趋势演化,而部分熔融产生的熔体则倾向于富镁、富铁、低铝、低硅的趋势演化。在岩石化学图解上本次实验中二辉橄榄岩部分熔融产生的熔体化学组成与汉诺坝地区拉斑玄武岩的组成相近。随熔融程度升高,熔体具有从苦橄质→玄武质演化的趋势。  相似文献   

17.
基于偏最小二乘回归的融雪型洪水预报模型   总被引:2,自引:0,他引:2  
覃新闻  李智录  李波 《水文》2006,26(5):38-40
本文采用偏最小二乘回归法对新疆塔什库尔干河流的实测流量资料进行分析,建立了日平均流量的偏最小二乘回归模型,采用建立的模型对2001年日平均流量进行了预报。研究分析表明,结果比较合理,这为融雪型洪水预报提供了一种新的思路和研究方法。  相似文献   

18.
       根据大陆下地壳的成分、含水基性岩体系部分熔融的基本原理和实验岩石学资料,本文对大陆下地壳的熔融机制展 开了讨论,并在此基础上对比实验熔体与大别山C 型埃达克岩的成分,进而探讨约束源岩成分、熔融的温压条件和部分熔 融程度。研究结果表明,大陆下地壳总体上是中- 基性(SiO2 50%~60% )和含少量水的,在缺乏流体相条件下伴随含水 矿物脱水的部分熔融是下地壳产生含水长英质熔体和无水残留体的主要机制。角闪岩在中等压力下(1.0~1.2 GPa,相当于 35~40 km)理论上能够产生石榴石含量超过~20% 的熔融残余,从而使得与之平衡的长英质熔体具有低Y,高Sr/Y 和La/Yb 比值等埃达克岩特征。基于水活度模型和变质基性岩p -t 相图的估算显示,含有40%~60% 角闪石的源岩(含水0.8%~1.2%) 在~950 ℃能够得到最大为15%~20% 的熔体,该熔体分数满足熔体分离的要求。大别山C型埃达克岩主要为高钾钙碱性系 列(K2O 3.5%~5%),与实验熔体成分的对比可知,其无法由低钾源岩在合理的部分熔融程度形成。根据钾在角闪岩部分熔 融过程过表现为强不相容元素的原理,利用合理假设的残余体组合得到的分配系数,估算K2O 含量为~1% 的源岩在熔融程 度为15%~20% 的情况下能够得到类似大别山C 型埃达克岩成分的熔体。  相似文献   

19.
出露于饶拔寨一带的含尖晶石橄榄岩体是大别山区最大的一个上地幔残片,固态侵位于北大别深成片麻岩中,呈无根侵入体的形式产出。岩体内的石榴辉石岩和榴辉岩包体,具高温成因的特点。属于上地幔部分熔融的产物,在Pl-CIPW值对Al_2O_3图解上落于拉斑玄武岩区;榴辉岩、石榴辉石岩和含尖晶石橄榄岩的REE配分形式相似,均属平坦型,只是尖晶石橄榄岩的∑REE较低。在Ni-Co-Sc三组分图解上,石榴辉石岩投绘于深位玄武岩熔体的趋势线附近,而尖晶石橄榄岩的投点则接近超镁铁质残余的趋势,清楚揭示出地幔部分熔融的迹象。尖晶石的Cr~#=12~21,而共生橄榄石Fo=92~93,说明部分熔融程度不高,估计约15%。尖晶石贫TiO_2暗示熔融过程氧逸度低。饶拔赛含尖晶石橄榄岩的出现表明;伴随超高压岩石单元的折返和隆升,会有大陆地幔残片被携带上来。软流圈的上涌或板片的断离使侵出的岩石圈板片得以维持较高的温度,这也就是石榴辉石岩早期深位退变质为麻粒岩相的原因,是后续的进一步抬升,才出现以韭角闪石 斜长石组合为特征的高角闪岩相的退变质作用。  相似文献   

20.
选取了湖北英山东冲河含有含水矿物黑云母和角闪石的退变质榴辉岩块状样品, 在0.1 GPa的恒压下, 分别进行了750、800、850、900℃四个温阶、恒温加热4 h的开放体系的脱水部分熔融实验.熔融从含水矿物的脱水暗化开始, 850℃时出现玻璃质熔体.镜下观察显示, 熔体主要分布在后成合晶边界、熔融程度最高的样品顶端、石英颗粒边界及裂隙内部这3个局部熔融体系内.受局部体系内部物质组成的控制, 同一温阶、不同体系内的熔体成分变化很大, 呈基性、中性和酸性.随着温度的升高, 同一体系内的熔体成分均向酸性方向演化.该实验结果表明, 恒压下局部熔融体系内物质组成的不同和温度的变化是影响熔体成分的2个重要因素, 这为理解榴辉岩块状样品的脱水部分熔融行为及与其他基性变质岩类的熔融行为进行对比提供了实验依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号