首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract— The enrichment of fluorine on the surface of Antarctic meteorites is investigated by applying the nuclear reactions 19F(p, αγ)16O or 19F(p, p'γ)19F with the proton induced gamma emission (PIGE) technique, a class of nuclear reaction analysis (NRA). Results for the Antarctic meteorites ALHA77294, TIL 82409, LEW 86015, ALHA77003, and ALH 83108 are presented. Possible sources of terrestrial F are: volcanic exhalation, tephra layers (volcanic glass), continental soil dust, or sea spray. Material from blue‐ice dust‐band samples also shows concentrations of F that are significantly higher than the bulk concentrations of meteorites. Finally, a quick investigation for Antarctic meteorites by external PIGE is proposed, leading to a F‐contamination index that supplements the qualitative ABC‐weathering index.  相似文献   

2.
Abstract— One of the five lines of evidence used by McKay et al. (1996) for relic life in the Martian meteorite Allan Hills (ALH) 84001 was the presence of objects thought to be microfossils. These ovoid and elongated forms are similar to structures found in terrestrial rocks and described as “nanobacteria” (Folk, 1993; McBride et al, 1994). Using the same procedures and apparatus as McKay et al. (1996), we have found structures on internal fracture surfaces of lunar meteorites that cannot be distinguished from the objects described on similar surfaces in ALH 84001. The lunar surface is currently a sterile environment and probably always has been. However, the lunar and Martian meteorites share a common terrestrial history, which includes many thousands of years of exposure to Antarctic weathering. Although we do not know the origin of these ovoid and elongated forms, we suggest that their presence on lunar meteorites indicates that the objects described by McKay et al. (1996) are not of Martian biological origin.  相似文献   

3.
Abstract— Examination of fracture surfaces near the fusion crust of the martian meteorite Allan Hills (ALH) 84001 have been conducted using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and has revealed structures strongly resembling mycelium. These structures were compared with similar structures found in Antarctic cryptoendolithic communities. On morphology alone, we conclude that these features are not only terrestrial in origin but probably belong to a member of the Actinomycetales, which we consider was introduced during the Antarctic residency of this meteorite. If true, this is the first documented account of terrestrial microbial activity within a meteorite from the Antarctic blue ice fields. These structures, however, do not bear any resemblance to those postulated to be martian biota, although they are a probable source of the organic contaminants previously reported in this meteorite.  相似文献   

4.
Abstract— Cosmic-ray produced nuclear tracks and noble gases have been studied in the martian orthopyroxenite Allan Hills 84001 to delineate its cosmic-ray exposure history, preatmospheric size, and fall characteristics. A K-Ar age of 3.9 Ga, cosmic-ray exposure duration of 16.7 Ma, and a preatmospheric radius of 10 cm have been deduced from the noble gas and track data. The track data suggest ALH 84001 to be a single fall that has suffered atmospheric mass ablation in excess of 85%, higher than the value deduced for the shergottites, ALHA 77005, EETA 79001, and Shergotty. The formation age, as well as the cosmic-ray exposure duration, determined in this work are in good agreement with values reported earlier and are distinctly different from other shergottite, nakhlite, and chassignite (SNC) meteorites analysed so far. The high cosmogenic 22Ne/21Ne ratio of 1.22 most probably reflects an effect due to non-chondritic composition of ALH 84001 as the track data suggest high shielding (<5cm) for the analysed samples. There are signatures in the noble gas data that indicate the possible presence of trapped Ar and Ne of martian atmospheric origin in ALH 84001.  相似文献   

5.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

6.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

7.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   

8.
Abstract— We measured the concentrations of the cosmogenic radionuclides 10Be (half-life = 1.51 × 106 a), 26Al (7.05 × 105 a) and 36Cl (3.01 × 105 a) in Lewis Cliff (LEW) 86360, an L-chondrite from the Lewis Cliff stranding area, East Antarctica. In addition, the concentrations and isotopic compositions of He, Ne and Ar were measured. The combined results yield a terrestrial age of 2.35 ± 0.15 Ma. Only one other stony meteorite with a similar terrestrial age (~2 Ma) is known from the Allan Hills stranding area (ALH 88019), whereas all previously dated stony meteorites from Antarctica are younger than 1 Ma. We argue that LEW 86360 spent most of its terrestrial residence time deep inside the ice, near the base of the glacier, where ice flow rates are much lower than at the surface. The terrestrial ages of LEW 86360 and ALH 88019 are consistent with existing hypotheses concerning the stability and persistence of the East Antarctic ice sheet.  相似文献   

9.
Abstract— The distribution of white evaporitic deposits differs among different meteorite compositional groups and weathering categories of Antarctic meteorites. Evaporites occur with unusual frequency on carbonaceous chondrites, and are especially common in carbonaceous chondrites of weathering categories A and B. Among achondrites, weathering categories A and A/B show the most examples of evaporite weathering. Unlike carbonaceous chondrites and achondrites, most evaporite-bearing ordinary (H and L) chondrites are from rustier meteorites of weathering categories B and, to a lesser degree, B/C and C. LL chondrites are conspicuous by their complete lack of any evaporitic weathering product. Almost two-thirds of all evaporite-bearing meteorites belong to weathering categories A, A/B, and B. Where chemical data are available, surficial evaporite deposits are associated with elemental anomalies in meteorite interiors. Meteorites of weathering classes B, A/B, and even A may have experienced significant element redistribution and/or contamination as a result of terrestrial exposure. Evaporite formation during terrestrial weathering cannot be neglected in geochemical, cosmochemical, and mineralogical studies of Antarctic meteorites. A lower-case “e” should be added to the weathering classification of evaporite-bearing Antarctic meteorites, to inform meteorite scientists of the presence of evaporite deposits and their associated compositional effects.  相似文献   

10.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

11.
Abstract— Miono et al. (1990) and Miono and Nakanishi (1994) have proposed that the build‐up of natural thermoluminescence (TL) in a drained layer directly below the meteorite fusion crust can be used to determine terrestrial ages of meteorites in the 40 to 200 ka range. We have measured the natural TL of the drained layer of 15 meteorites. The data indicate that this technique could be used to determine terrestrial ages of meteorites with ages <200 ka, after which TL equilibrium is reached. Comparison of TL build‐up with terrestrial ages for a suite of Antarctic meteorites suggests that the meteorites have been exposed to temperatures of 0 to 5 °C. The close correspondence between natural TL levels and surface exposure TL growth curves suggest that Allan Hills meteorites with ages <200 ka have spent a significant portion of their terrestrial history exposed on the ice surface, rather than being buried in the ice sheet. The technique is, however, sensitive to thermal history; and, for Antarctic meteorites with terrestrial ages <200 ka, natural TL of the drained zone largely reflects exposure on the ice surface.  相似文献   

12.
Abstract— We have measured the concentrations of the cosmogenic radionuclides 10Be, 26Al and 36Cl (half-lives 1.51 Ma, 716 ka, and 300 ka, respectively) in two different laboratories by accelerator mass spectrometry (AMS) techniques, as well as concentrations and isotopic compositions of stable He, Ne and Ar in the Antarctic H-chondrite Allan Hills (ALH) 88019. In addition, nuclear track densities were measured. From these results, it is concluded that the meteoroid ALH 88019 had a preatmospheric radius of (20 ± 5) cm and a shielding depth for the analyzed samples of between 4 and 8 cm. Using calculated and experimentally determined production rates of cosmogenic nuclides, an exposure age of ~40 Ma is obtained from cosmogenic 21Ne and 38Ar. The extremely low concentrations of radionuclides are explained by a very long terrestrial age for this meteorite of 2 ± 0.4 Ma. A similarly long terrestrial age was found so far only for the Antarctic L-chondrite Lewis Cliff (LEW) 86360. Such long ages establish one boundary condition for the history of meteorites in Antarctica.  相似文献   

13.
Abstract— Natural and induced thermoluminescence (TL) data are reported for 12 meteorites recovered from the Allan Hills region of Antarctica by the European field party during the 1988/89 field season. The samples include one with extremely high natural TL, ALH88035, suggestive of exposure to unusually high radiation doses (i.e., low degrees of shielding), and one, ALH88034, whose low natural TL suggests reheating within the last 105 years. The remainder have natural TL values suggestive of terrestrial ages similar to those of other meteorites from Allan Hills. ALH88015 (L6) has induced TL data suggestive of intense shock. TL sensitivities of these meteorites are generally lower than observed falls of their petrologic types, as is also observed for Antarctic meteorites in general. Acid-washing experiments indicate that this is solely the result of terrestrial weathering rather than a nonterrestrial Antarctic—non-Antarctic difference. However, other TL parameters, such as natural TL and induced peak temperature-width, are unchanged by acid washing and are sensitive indicators of a meteorite's metamorphic and recent radiation history.  相似文献   

14.
Abstract— Rare earth element (REE) and other selected trace and minor element concentrations were measured in individual grains of orthopyroxene, feldspathic glass (of plagioclase composition) and merrillite of the ALH 84001 Martian meteorite. Unlike in other Martian meteorites, phosphate is not the main REE carrier in ALH 84001. The REE pattern of ALH 84001 bulk rock is dependent on the modal abundances of three REE-bearing phases, namely, orthopyroxene, which contains most of the heavy rare earth elements (HREEs); feldspathic glass, which dominates the Eu abundances; and merrillite, which contains the majority of the light rare earth elements (LREEs). Variations in the REE abundances previously observed in different splits of ALH 84001 can easily be explained in terms of small variations in the modal abundances of these three minerals without the need to invoke extensive redistribution of LREEs. At least some orthopyroxenes (i.e., those away from contacts with feldspathic glass) in ALH 84001 appear to have preserved their original REE zonation from igneous fractionation. An estimate of the ALH 84001 parent magma composition from that of the unaltered orthopyroxene “core” (i.e., zoned orthopyroxene with the lowest REE abundances) indicates that it is LREE depleted. This implies that the Martian mantle was already partly depleted within ~100 Ma of solar system formation, which is consistent with rapid accretion and differentiation of Mars. Although equilibration and exchange of REEs between phases (in particular, transport of LREEs into the interstitial phases, feldspathic glass and merrillite) cannot be ruled out, our data suggest that the LREE enrichment in melts “in equilibrium” with these interstitial phases is most likely the result of late-stage infiltration of the cumulate pile by a LREE-enriched melt.  相似文献   

15.
Abstract— We report neutron activation analyses, including radiochemical determination of trace siderophile elements (Au, Ge, Ir, Ni, Os and Re), for three SNC/martian meteorites, and Os and Re results for numerous eucrites. Ratios such as Ga/Al in the SNC orthopyroxenite ALH84001 confirm its martian affinity—its many distinctive characteristics, most notably its near-primordial age, notwithstanding. To the list of ALH84001's idiosyncrasies can now be added extraordinarily low concentrations of Au, Ni and, especially, Re (17 pg/g), for a martian meteorite. We consider several possible origins for the anomalously low Re content in ALH84001, including metasomatism or alteration. The pyroxene-cumulate nature of this rock probably does not account for its low Re content. Other SNC meteorites are also cumulates. An examination of Re-Nd variations among terrestrial basalts and komatiites suggests that Re is compatible with mantle minerals in general and only incompatible with olivine (however, olivine dominates the mantle residuum, especially during komatiite genesis). Our preferred model is that the ALH84001 parent melt formed in a mantle source region that was far more Re-depleted, and/or at a substantially lower oxygen fugacity, than the sources of the young SNC meteorites. Such a contrast is consistent with models that replenish siderophile elements in planetary mantles by gradual admixture of late-accreting matter and similarly derive most planetary water (which serves as an oxidant) very late in accretion. According to this model, ALH84001 formed before the siderophile-rich matter and water had been mixed well into the martian interior. Possibly the martian mantle never became generally as Re-rich and/or oxidized as the source region(s) of the younger SNCs.  相似文献   

16.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

17.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

18.
Abstract— The abundances and isotopic compositions of N and Ar have been measured by stepped combustion of the Allan Hills 84001 (ALH 84001) Martian orthopyroxenite. Material described as shocked is N-poor ([N] ~ 0.34 ppm; δ15N ~ +23%); although during stepped combustion, 15N-enriched N (δ15N ~ +143%) is released in a narrow temperature interval between 700 °C and 800 °C (along with 13C-enriched C (δ13C ~ +19%) and 40Ar). Cosmogenic species are found to be negligible at this temperature; thus, the iso-topically heavy component is identified, in part, as Martian atmospheric gas trapped relatively recently in the history of ALH 84001. The N and Ar data show that ALH 84001 contains species from the Martian lithosphere, a component interpreted as ancient trapped atmosphere (in addition to the modern atmospheric species), and excess 40Ar from K decay. Deconvolution of radiogenic 40Ar from other Ar components, on the basis of end-member 36Ar/14N and 40Ar/36Ar ratios, has enabled calculation of a K-Ar age for ALH 84001 as 3.5–4.6 Ga, depending on assumed K abundance. If the component believed to be Martian palaeoatmos-phere was introduced to ALH 84001 at the time the K-Ar age was set, then the composition of the atmosphere at this time is constrained to: δ15N ≥ +200%, 40Ar/36Ar ≤ 300 and 36Ar/14N ≥ 17 × 10?5. In terms of the petrogenetic history of the meteorite, ALH 84001 crystallised soon after differentiation of the planet, may have been shocked and thermally metamorphosed in an early period of bombardment, and then subjected to a second event. This later process did not reset the K-Ar system but perhaps was responsible for introducing (recent) atmospheric gases into ALH 84001; and it might mark the time at which ALH 84001 suffered fluid alteration resulting in the formation of the plagioclase and carbonate mineral assemblages.  相似文献   

19.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

20.
Abstract— Spherical carbonate globules of similar composition, size, and radial Ca‐, Mg‐, and Fe‐zonation to those in martian meteorite Allan Hills (ALH) 84001 were precipitated from Mg‐rich, supersaturated solutions of Ca‐Mg‐Fe‐CO2‐H2O at 150 °C. The supersaturated solutions (pH ? 6–7) were prepared at room temperature and contained in TeflonTM‐lined stainless steel vessels, which were sealed and heated to 150 °C for 24 h. Experiments were also conducted at 25 °C and no globules comparable to those of ALH 84001 were precipitated. Instead, amorphous Fe‐rich carbonates were formed after 24 h and Mg‐Fe calcites formed after 96 h. These experiments suggest a possible low‐temperature inorganic origin for the carbonates in martian meteorite ALH 84001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号