首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous age estimates of the Imbrium impact range from 3770 to 3920 Ma, with the latter being the most commonly accepted age of this basin‐forming event. The occurrence of Ca‐phosphates in Apollo 14 breccias, interpreted to represent ejecta formed by this impact, provides a new opportunity to date the Imbrium event as well as refining the impact history of the Moon. We present new precise U‐Pb analyses of Ca‐phosphates from impact breccia sample 14311 that are concordant and give a reliable weighted average age of 3938 ± 4 Ma (2σ). Comparison with previously published U‐Pb data on phosphate from Apollo 14 samples indicate that all ages are statistically similar and suggest phosphates could have been formed by the same impact at 3934 Ma ± 3 Ma (2σ). However, this age is older than the 3770 to 3920 Ma range determined for other samples and also interpreted as formed during the Imbrium impact. This suggests that several impacts occurred during a 20–30 Ma period around 3900 Ma and formed breccias sampled by the Apollo missions.  相似文献   

2.
Abstract— Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the pre-metamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Cañellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). We confirm that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Cañellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. These meteorites contain small melt rock clasts that were incorporated into the host chondrite while still molten and/or plastic and cooled rapidly and, yet, are totally equilibrated with their hosts. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibration of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.  相似文献   

3.
Abstract— Mixing models using major and trace elements show that the bulk composition of lithology A (xenocryst-bearing magnesian basalt) of Elephant Moraine A79001 (EETA79001) can be reasonably approximated as a simple mixture of ~44% EETA79001 lithology B (ferroan basalt) and ~56% of Allan Hills A77005 (ALHA7705) light lithology (incompatible element-poor lherzolite). Micro-instrumental neutron activation analysis (INAA) data on xenocryst-free groundmass samples of lithology A show that about 20–25% of the melt phase could be dissolved lherzolite. The bulk and groundmass samples of lithology A have excesses in Au, which indicates either meteoritic contamination or addition by some unknown martian geochemical process. Previous workers have suggested that lithology A was formed by either assimilation of cumulates (like ALHA77005), by a basalt (like lithology B), or by mixing of basaltic and lherzolitic magmas. The former scenario is energetically improbable and unlikely to explain the normal Fe/Mg zonation in lithology A groundmass pyroxenes, whereas the latter scenario is unlikely to satisfy the constraints of the mixing model indicating the ultramafic component is poor in incompatible elements. We suggest rather that EETA79001 lithology A is an impact melt composed dominantly of basalt like lithology B and lherzolitic cumulates like the trace-element-poor fraction of ALHA77005 or Y-793605. This model can satisfy the energetic, petrologic, and geochemical constraints imposed by the samples. If EETA79001 lithology A is an impact melt, this would have considerable consequences for current models of martian petrologic evolution. It would call into question the generally accepted age of magmatism of martian basalts and preclude the use of lithology A groundmass as a primary martian basalt composition in experimental studies. Regardless, the latter is required because lithology A groundmass is a hybrid composition.  相似文献   

4.
Abstract— We report the noble gas isotopic abundances of five dimict breccias and one cataclastic anorthosite that were collected at the Apollo 16 landing site. Orbital and surface photographs indicate that rays from South Ray crater, an almost 1 km wide young crater in the Cayley plains, extend several kilometers from their source into the area that was sampled by the Apollo 16 mission. Previous studies have shown that South Ray crater formed 2 Ma ago and that a large number of rocks might originate from this cratering event. On the basis of cosmic-ray produced nuclei, we find that the six rocks investigated in this work yield the same lunar surface exposure age. Using literature data, we recalculate the exposure ages of additional 16 rocks with suspected South Ray crater origin and obtain an average exposure age of 2.01 ± 0.10 Ma. In particular, all nine dimict breccias (a type of rock essentially restricted to the Apollo 16 area consisting of anorthosite and breccia phases) dated until now yield an average ejection age of 2.06 ± 0.17 Ma. We conclude that they must originate from the Cayley formation or from bedrock underlying the Cayley plain. We determined the gas retention ages for the dimict breccias based on the 40K-40Ar and U,Th-136Xe dating methods: rock 64425 yields a 40K-40Ar age of 3.96 Ga and rock 61016 a U,Th-136Xe age of 3.97 Ga. These results, together with 39Ar-40Ar ages obtained by other workers for rocks 64535 (3.98 Ga) and 64536 (3.97 Ga), show that the dimict breccias formed 3.97 Ga ago.  相似文献   

5.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   

6.
The Boulder 1 breccias are similar in composition to other Taurus-Littrow massif samples and therefore probably derived from the same source, undoubtedly the Serenitatis basin. However, they are substantially different in texture from other Apollo 17 massif rocks, indeed are very nearly unique among the rocks returned by all Apollo missions. The boulder is set apart by its content of dark, rounded inclusions or bombs, up to several tens of centimeters in dimension, consisting largely of very fine, angular, mineral debris, welded together by a lesser amount of extremely fine-grained material that appears to be devitrified glass. To account for these uncommon structures, a phase of the basinforming impact event is sought that would produce relatively small amounts of debris and deposit them on or near the basin rim. It is suggested that the components of the boulder might represent very early, high angle ejecta from the Serenitatis event, and that the dark breccia inclusions are accretional structures formed from a cloud of hot mineral debris, melt droplets, and vapor that was ejected at high angles from the impact point soon after penetration of the Serenitatis meteoroid. This small amount of early high-angle ejecta would have remained in ballistic trajectories while the main phase of crater excavation deposited much larger amounts of deeper-derived debris and melt-rock on the rim of the basin, after which the early ejecta was deposited as a cooler (~450°C) stratum on top. The matrix of this breccia gained its modest degree of coherency by thermal sintering as the capping stratum cooled. The boulder is a fragment of this layer, broken out and rolled to the foot of the South Massif ? 55 m.y. ago.  相似文献   

7.
Analysis of terrain in the Apollo 16 Descartes landing region shows a series of features that form a stratigraphic sequence which dominates the history and petrogenesis at the site. An ancient 150 km diam crater centered on the Apollo 16 site is one of the earliest recognizable major structures. Nectaris ejecta was concentrated in a regional low at the base of the back slope of the Nectaris basin to form the Descartes Mountains. Subsequently, a 60 km diam crater formed in the Descartes Mountains centered about 25 km to the west of the site. This crater dominates the geology and petrogenetic history of the site. Stone and Smoky Mountains represent the degraded terraced crater walls, and the dark matrix breccias and metaclastic rocks derived from North and South Ray craters represent floor fallback breccias from this cratering event. Subsequent major cratering occurred in the region (Dollond B, etc.) prior to the Imbrium and Orientale basin-forming events but had minor effect on the site. Based on this interpretation, contributions from Imbrium at the Apollo 16 site are minor and those from Orientale negligible. The petrology of the Apollo 16 rocks supports this stratigraphic and process model of a local crater-dominated history for this region.  相似文献   

8.
Abstract— We report secondary ion mass spectrometry (SIMS) U‐Pb analyses of zircon and apatite from four breccia samples from the Apollo 14 landing site. The zircon and apatite grains occur as cogenetic minerals in lithic clasts in two of the breccias and as unrelated mineral clasts in the matrices of the other two. SIMS U‐Pb analyses show that the ages of zircon grains range from 4023 ± 24 Ma to 4342 ± 5 Ma, whereas all apatite grains define an isochron corresponding to an age of 3926 ± 3 Ma. The disparity in the ages of cogenetic apatite and zircon demonstrates that the apatite U‐Pb systems have been completely reset at 3926 ± 3 Ma, whereas the U‐Pb system of zircon has not been noticeably disturbed at this time. The apatite U‐Pb age is slightly older than the ages determined by other methods on Apollo 14 materials highlighting need to reconcile decay constants used for the U‐Pb, Ar‐Ar and Rb‐Sr systems. We interpret the apatite age as a time of formation of the Fra Mauro Formation. If the interpretation of this Formation as an Imbrium ejecta is correct, apatite also determines the timing of Imbrium impact. The contrast in the Pb loss behavior of apatite and zircon places constraints on the temperature history of the Apollo 14 breccias and we estimate, from the experimentally determined Pb diffusion constants and an approximation of the original depth of the excavated samples in the Fra Mauro Formation, that the breccias experienced an initial temperature of about 1300–1100 °C, but cooled within the first five to ten years.  相似文献   

9.
Sixteen samples of Boulder 1 from Station 2 at the Apollo 17 site were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Te, Tl, U, and Zn. Two clast samples contam no meteoritic material and appear to consist of relatively pristine igneous rocks: an unusual, KREEP-rich pigeonite basalt of very high Ge content, and an alkali-poor coarse norite. Nine grey or black breccia samples contain a unique, Group 3 meteoritic component of Ir/Au ratio 0.65–0.82, which appears to separate into subgroups 3H and 3L on the basis of Ni, Ge, and Re content. It is quite distinct from the Group 2 component (Ir/Au - 0.46–0.54) that dominates at the Apollo 17 site.The unique black-rimmed clasts from this boulder show striking compositional zoning. The cores of anorthositic breccia are very low in Rb, Cs, and U, and have a distinctive 5L meteoritic component (Ir/Au1.1). The black rinds are 5- to 10-fold richer in Rb, Cs, and U and have a Group 3 meteoritic component. The cores may represent breccias formed in an earlier impact that became coated with alkali-rich ejecta during the event that produced the boulder.Because of the rarity of the Group 3 meteoritic component at the Apollo 17 site, this boulder cannot represent ordinary Serenitatis ejecta, with their characteristic admixture of the Group 2 Serenitatis projectile. It may represent pre-Serenitatis material excavated from the fringes of the crater during late stages of the Serenitatis impact, but only lightly shocked and hence uncontaminated by the Serenitatis projectile.  相似文献   

10.
Carbonates from the impact melt-bearing breccia in the 2016 IODP/ICDP Expedition 364 drill core at Site M0077 were systematically documented and characterized petrographically and geochemically. Calcite, the only carbonate mineral present, is abundant throughout this deposit as five distinct varieties: (1) subangular carbonate clasts (Type A); (2) subround/irregular carbonate clasts with clay altered rims (Type B); (3) fine-crystalline matrix calcite (Type C); (4) void-filling sparry calcite (Type D); and (5) microcrystalline carbonate with flow textures (Type E). Quantitative geochemical analysis shows that calcite in all carbonate varieties are low in elemental impurities (<2.0 cumulative wt% on average); however, relative concentrations of MgO and MnO vary, which provides distinction between each variety: MgO is highest in calcite from Types A, B, and C carbonates (0.2–0.8 wt% on average); MnO is highest in calcite from Types B, C, and D carbonates (0.2–1.3 wt% on average); and calcite from Type E carbonate is most pure (<0.1 wt% on average MgO and MnO, cumulatively). Based on textural and geochemical variations between carbonate types, we interpret that some of the carbonate target rocks melted during impact and were immiscible within the silicate-dominated melt sheet prior to the resurgence of seawater. Type B clasts were formed by molten fuel–coolant interaction, as the incoming seawater eroded through the melt sheet and encountered carbonate melt (Type E). Post-impact meteoric-dominated hydrothermal activity produced the Mn-elevated calcite from Type C and D carbonates, and altered the Type B clasts to be elevated in Mn and host a clay-rich rim.  相似文献   

11.
Abstract— CM chondrite clasts that have experienced different degrees of aqueous alteration occur in H‐chondrite and HED meteorite breccias. Many clasts are fragments of essentially unshocked CM projectiles that accreted at low relative velocities to the regoliths of these parent bodies. A few clasts were heated and dehydrated upon impact; these objects most likely accreted at higher relative velocities. We examined three clasts and explored alternative scenarios for their formation. In the first scenario, we assumed that the H and HED parent bodies had diameters of a few hundred kilometers, so that their high escape velocities would effectively prevent soft landings of small CM projectiles. This would imply that weakly shocked CM clasts formed on asteroidal fragments (family members) associated with the H and HED parent bodies. In the second scenario, we assumed that weakly shocked CM clasts were spall products ejected at low velocities from larger CM projectiles when they slammed into the H and HED parent bodies. In both cases, if most CM clasts turn out to have ancient ages (e.g., ?3.4‐4.1 Ga), a plausible source for their progenitors would be outer main belt objects, some which may have been dynamically implanted 3.9 Ga ago by the events described in the so‐called “Nice model.” On the other hand, if most CM clasts have recent ages (<200 Ma), a plausible source location for their parent body would be the inner main belt between 2.1–2.2 AU. In that case, the possible source of the CM‐clasts' progenitors' parent fragments would be the breakup ?160 Ma ago of the parent body 170 km in diameter of the Baptistina asteroid family (BAF).  相似文献   

12.
The Taurus-Littrow region (Apollo 17 landing area) is located in the northeastern quadrant of the Moon in the mountainous area on the southeastern rim of the Serenitatis basin. The highlands in the Taurus-Littrow region can be divided into three broad terrain types. (1)Littrow massifs - massive, 10-20 km diam, steep-sloped (20°–30°), highland blocks often bordered by linear graben-like valleys. (2)Littrow sculptured hills - a series of closely spaced 1-5 km diam domical hills occupying broad highland plateaus which have been cratered and block faulted. Sculptured hill units stretch along the eastern edge of Serenitatis from the Apollo 17 area north to Posidonius. (3)Vitruvius front and plateau - a long irregular but generally north-trending scarp (occasionally rising over 2 km above the surrounding terrain) and its associated uplifted plateau to the east. This terrain is composed of hills ranging from 2-7 km diam, whose morphology is intermediate between the sculptured hills and the massifs. It is concluded that the highland units in the Taurus-Littrow region are primarily related to the origin of the Serenitatis basin because of their marked similarity to more well-preserved basin-related deposits in the younger Imbrium and Orientale basins: (1) the massifs and sculptured terra are morphologically similar to the Imbrium basin-related Montes Alpes and Alpes Formation, (2) the relative geographic position of the Taurus-Littrow highlands and Montes Alpes/Alpes Formation is the same, forming the second ring and spreading distally, and (3) the structures are similar in orientation and development (e.g., massifs are related to radial and concentric structure; Alpes Formation/sculptured terra are not). Interpretation of the massifs and sculptured hills as Serenitatis impact-related deposits lessens the possible role of highland volcanism in the origin and evolution of the Taurus-Littrow terrain, although extensive pre-Serenitatis volcanism cannot be ruled out. The preserved morphology of the sculptured hills suggests that the thickness of post-Serenitatis large basin ejecta (from Imbrium, for instance) is small, compared to the total highland section. This implies that the primary contributions to the highland stratigraphy are from Serenitatis and pre-Serenitatis events. The highland surface, however, may be dominated by ejecta from the latest nearby large event (formation of the Imbrium basin). Structural elements mapped in the Taurus-Littrow area include lineaments, the Vitruvius structural front, two types of grabens, and scarps. The majority of lineaments, as well as some grabens, appear to be related to a dominant NW trend and subordinate N and NE trends. These trends are interpreted to be related to a more regional lunar grid pattern which formed in the area prior to the origin of the Serenitatis basin, causing distinct structural inhomogeneities in the highland terrain. The Serenitatis event produced radial and concentric structures predominantly influenced by this pre-existing trend. Younger grabens are generally circumferential to the Serenitatis basin and appear to be related to readjustment of Serenitatis-produced structures; those that are oblique to Serenitatis follow the pre-Serenitatis structural grain. No obvious structural elements can be correlated with the post-Serenitatis, Nectaris and Crisium basins. It is believed that the origin and hence the geographic concentration of the Littrow massifs is related to the fact that Serenitatis radials in the massif area coincide with lines of pre-existing structural weakness along a general lunar grid direction (NW). Pre-existing structurally weak lunar grid trends seem to have been structurally reactivated by Serenitatis radials, causing preferential uplift of large blocks in this area. Elsewhere in the region radials would be oblique to this direction. Since Serenitatis and Imbrium radials coincide in the massif area, the post-Serenitatis Imbrium event may have reactivated Serenitatis radial fractures, possibly rejuvenating the massif terrain. The geologic and tectonic history of the Taurus-Littrow highlands began prior to the origin of Serenitatis in Tectonic Interval I. The strong NW trending structural elements are believed to have formed as part of a global stress pattern (possibly shear) sometime during this period of probable crustal formation and fragmentation. Tectonic Interval II was initiated by the origin of the Serenitatis basin. The basic topography and morphology of the region and most large grabens resulted from this event and their orientations show that they were controlled at least in part by the pre-existing grid. No other large basins forming during this interval appear to have had a major effect on the area. Tectonic Interval III is dominated by the formation of narrow grabens following structural patterns circumferential to the Serenitatis basin and tangential to it where they coincide with pre-existing grid directions. Serenitatis isostatic rebound or early mare fill may have produced this stress system. The scarp in the vicinity of the Apollo 17 landing site is the youngest obvious structural element.  相似文献   

13.
Abstract— We have studied a unique impact-melt rock, the Ramsdorf L chondrite, using optical and scanning microscopy and electron microprobe analysis. Ramsdorf contains not only clast-poor impact melt (Begemann and Wlotzka, 1969) but also a chondritic portion (>60 g) with what appears at low magnification to be a normal, well-defined chondritic texture. However, detailed studies at high magnification show that >90 vol% of the crystals in the chondritic portion were largely melted by the impact: the chondrules lack normal microtextures and are ghosts of the original features. The only relics from the precursor chondrules are olivine crystals, which have the highest melting temperature (~1620 °C). Pyroxene-rich chondrules were so extensively melted that no phenocrysts were preserved and the melt crystallized in situ before significant mixing with exterior olivine-rich melts. Fine-grained pyroxene chondrule ghosts have sharper boundaries with the matrix than porphyritic olivine and pyroxene chondrule ghosts, probably because pyroxene-rich melts are significantly more viscous. Complex textures that formed by injection of melt along cracks and fractures in relic olivines suggest that the chondritic portion of Ramsdorf formed directly from petrologic type 3–4 material by strong shock. We infer that Ramsdorf was largely melted by shock pressures of ~75–90 GPa and that chondrule ghosts and relic olivine phenocrysts were locally preserved by rapid cooling. Quenching was not due to the addition of cold clasts into the melt but to heterogeneous shock heating that only caused internal melting of large olivines and pyroxenes. Ramsdorf appears to be one of the most heavily shocked meteorites that has retained some trace of its original texture.  相似文献   

14.
Many of the breccias returned by the Apollo missions are capable of acquiring a substantial viscous remanent magnetization (VRM) which is of two forms. The first one has an upper limit to the relaxation times of about 100 to 1000min which corresponds to a grain diameter of about 145 Å. This suggests that the maximum relaxation time is determined by the transition from superparamagnetic to stable single domain particles. The second form of VRM follows the classical logt dependence typical for multidomain grains with a wide distribution of relaxation times. Hysteresis loop measurements yield the same kind of grain size distributions. In addition the analysis shows a fivefold enrichment of native iron in the breccias and soils as compared to the igneous rocks. In spite of a large VRM some breccias contain a stable remanent magnetization. Its intensity is typically 10–6emu/gm, the same value found for igneous rocks. It is possible, therefore, to use some of the breccias to reconstruct the history of the lunar magnetic field.  相似文献   

15.
We report infrared thermal emission measurements of 1862 Apollo, which is the type example of an Earth-crossing asteroid. We derive a geometric albedo of 0.21 ± 0.02 which is within the albedo range of the S class of asteroids. The effective diameter was observed to vary with rotation from 1.2 ± 0.1 to 1.5 ± 0.1 km.  相似文献   

16.
Curation and preparation of samples for chemical analysis can occasionally lead to significant contamination. This issue is of concern in the study of lunar samples, especially those from the Apollo sample collection, where available masses are finite. Here we present compositional data for stainless steels that have commonly been used in the processing of Apollo lunar samples at NASA Johnson Space Center, including a chisel and a vessel typically used to transfer Apollo samples to principal investigators. The Type 304 stainless steels are Cr-rich, with high concentrations of Mn (4000–18,000 μg g−1), Cu (1000–22,900 μg g−1), Mo (1030–1120 μg g−1), and W (72–193 μg g−1). They have elevated highly siderophile element (HSE) concentrations (up to 92 ng g−1 Os), 187Os/188Os ranging from 0.1310 to 0.1336, and negligible lithophile element abundances. We find that, while metal contamination is possible, significant (≫0.01% by mass) addition of stainless steel is required to strongly affect the composition of the HSE, W, Mo, Cr, or Cu for most Apollo lunar samples. Nonetheless, careful appraisal on a case-by-case basis should take place to ensure contamination introduced through sample processing during curation is at acceptably low levels. A survey of lunar mare basalts and crustal rocks indicates that metal contamination plays a negligible role in the compositional variability of the HSE and W compositions preserved in these samples. Further work to constrain contamination for other properties of Apollo samples is required (e.g., organics, microbes, water, noble gases, and magnetics), but the effect of metal contamination can be well-constrained for the Apollo lunar collection.  相似文献   

17.
We have attempted to reconstruct the orbit of the Farmington L5 chondrite which fell in Kansas in 1890. Because its radiation age is uniquely short (25 000 years), its orbit should still closely resemble that of its parent body. A search of 280 contemporary newspapers and other sources turned up more than 60 useable eyewitness reports from 32 localities, which led to the following estimate of the apparent radiant: height 60°, azimuth 20°, with an uncertainty of about 10°. Orbital elements were determined for this radiant for four plausible preatmospheric velocities: 13, 16, 19, and 22 km/sec. The results show quite definitely that Farmington had a small orbit of low inclination: semimajor axis 1–1.9 AU, perihelion ? 0.4 AU, aphelion ? 3.0 AU, inclination ? 16°. Because of the short radiation age, the parent body of Farmington must already have been in an Earth-crossing orbit when the meteorite was ejected from it by an impact. Of the 11 known Earth-crossing asteroids with encounter velocities below 22 km/sec, 1862 Apollo, Hermes, and 1865 Cerberus are passable matches, while 1620 Geographos and 1685 Toro are more marginal possibilities. Apparently Earth-crossing asteroids are the immediate parent bodies of at least some meteorites. Their ultimate source must be the ultimate source of most stony meteorites.  相似文献   

18.
Soils at the Apollo 16 site become progressively darker as the percentage of glassy agglutinates increases. Magnetic separates of the agglutinate fraction of a soil always are darker than the bulk soil, and darker than the non-agglutinate fraction that consists of rock and mineral fragments. Darkening of a soil with maturity is due mainly to the increasing proportion of agglutinates. Coating of rock and mineral fragments with thin deposits of glass aids darkening in a minor way, but most of these particles eventually are destroyed by melting as the soils mature.Present address: Dept. of Geological Sciences, University of Washington, Seattle, Wash., U.S.A.  相似文献   

19.
《Icarus》1987,70(2):246-256
Photoelectric lightcurves of the asteroid 1862 Apollo were obtained in November–December 1980 and in April–May 1982. The period of rotation is unambiguously determined to be 3.0655 ± 0.0008 hr. The 1980 observations span a range of solar phase angle from 30° to 90°, and the 1982 observations, 0.°2 to 90°. The Lumme-Bowell-Harris phase relation can be fit to the absolute magnitudes at maximum light with an RMS scatter of 0.06 magnitude over the entire range of phase angle. The constants of the solution are absolute V magnitude at zero phase angle and at maximum light, 16.23 ± 0.02; slope parameter, 0.23 ± 0.01. These constant corresponds to values in the linear phase coefficient system of V(1, 0) = 16.50 ± 0.02 and a phase coefficient of βv = 0.0305 ± 0.0012 mag/degree in the phase range 10°–20°. The slope of the phase curve is typical for a moderate albedo asteroid. The absolute magnitudes observed in 1980 and 1982 fall along a common phase curve. That is, Apollo was not intrinsically brighter at one apparition than the other. This is not surprising, since the two apparitions were almost exactly opposite one another in the sky. A pole position was calculated from the observed deviation of the lightcurve from constant periodicity (synodic-sidereal difference) during both apparitions. The computed 1950 ecliptic coordinates of the pole are: longitude = 56°, latitude = −26°. This is the “north” pole with respect to right-handed (counter-clockwise) rotation. The formal uncertainty of the solution for the pole position is less than 10°, but realistically may be several times that, or even completely wrong. The sidereal period of rotation asscociated with this pole solution is 3.065436 ± 0.000012 hr.  相似文献   

20.
This paper presents an updated stratigraphical and compositional study of the exposed maria within the Imbrium basin on the Moon. Clementine multispectral data were employed to derive TiO2 and FeO wt% abundance estimates of potentially distinct basaltic flows. Additionally, NASA Lunar Orbiter images were used to estimate flow ages using crater count statistics. Mare Imbrium shows evidence of a complex suite of low to high-Ti basaltic lava units infilling the basin over an 800 million year timescale. More than a third (37%) of identified mare basalts were found to contain 1-3 wt% TiO2. Two other major mare lithological units (representing about 25% of the surface each) show TiO2 values between 3-5 and 7-9 wt%. The dominant fraction (55%) of the sampled maria contain FeO between 16 and 18 wt%, followed by 27% of maria having 18-20 wt% and the remaining 18%, 14-16 wt% FeO. A crater frequency count (for diameters >500 m) shows that in three quarters of the sampled mare crater counts range between 3.5 and 5.5×10−2 per km2, which translates, according to a lunar cratering model chronology, into estimated emplacement ages between ∼3.3 and 2.5 Ga. A compositional convergence trend between the variations of iron and titanium oxides was identified, in particular for materials with TiO2 and FeO content broadly above 5 and 17 wt%, respectively, suggesting a related petrogenesis and evolution. According to these findings, three major periods of mare infill are exposed in the Imbrium basin; despite each period showing a range of basaltic compositions (classified according to their TiO2 content), it is apparent that, at least within these local geological settings, the igneous petrogenesis generally evolved through time towards more TiO2- and FeO-rich melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号