首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

2.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

3.
Abstract— Most 40Ar‐39Ar ages of L chondrites record an event at approximately 500 Ma, indicating a large collisional impact at that time. However, there is a spread in ages from 400 to 600 Ma in these meteorites that is greater than the analytical uncertainty. Identification of, and correction for, trapped Ar in a few L chondrites has given an age of 470 ± 6 Ma. This age coincides with Ordivician fossil meteorites that fell to Earth at 467 ± 2 Ma. As these fossil meteorites were originally L chondrites, the apparent conclusion is that a large impact sent a flood of L chondrite material to Earth, while material that remained on the L chondrite parent body was strongly heated and reset. We have reduced 40Ar‐39Ar data for Northwest Africa 091 using various techniques that appear in the literature, including identification and subtraction of trapped Ar. These techniques give a range of ages from 455 to 520 Ma, and show the importance of making accurate corrections. By using the most straightforward technique to identify and remove a trapped Ar component (which is neither terrestrial nor primordial), an 40Ar‐39Ar age of 475 ± 6 Ma is found for Northwest Africa 091, showing a temporal link to fossil meteorites. In addition, high temperature releases of Northwest Africa 091 contain evidence for a second trapped component, and subtraction of this component indicates a possible second collisional impact at approximately 800 Ma. This earlier age coincides with 40Ar‐39Ar ages of some H and L chondrites, and lunar samples.  相似文献   

4.
Abstract— The isotopic abundances of the noble gases in bulk samples of the Guangnan L6 chondrite and of the anomalous CV3 chondrite Ningqiang were measured. Guangnan yields a cosmic-ray exposure age of 2.9 ± 0.4 Ma and belongs to the group of L chondrites with low exposure ages. Ningqiang, however, shows a cosmic-ray exposure age of 42.2 ± 4.0 Ma, the highest for a CV3 chondrite. The concentrations of radiogenic 4He and 40Ar in Guangnan are the lowest observed in any ordinary chondrite. A U/Th-4He age of 27 ± 16 Ma and a 40K–40Ar age of 142 ± 14 Ma are calculated assuming L chondritic U, Th, and K concentrations. This assumption is justified considering the fact that a mineralogical composition typical for L chondrites was reported for this meteorite. The observed severe gas losses must have occurred at or before the onset of the exposure of the meteoroid to the cosmic radiation. For the Ningqiang carbonaceous chondrite concordant gas retention ages are obtained: The U/Th-4He age is 4170 ± 160 Ma whereas the 40K–40Ar age is 4260 ± 70 Ma, assuming average U, Th, and K concentrations for C3 chondrites.  相似文献   

5.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

6.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

7.
Abstract– Miller Range (MIL) 05029 is a slowly cooled melt rock with metal/sulfide depletion and an Ar‐Ar age of 4517 ± 11 Ma. Oxygen isotopes and mineral composition indicate that it is an L chondrite impact melt, and a well‐equilibrated igneous rock texture with a lack of clasts favors a melt pool over a melt dike as its probable depositional setting. A metallographic cooling rate of approximately 14 °C Ma?1 indicates that the impact occurred at least approximately 20 Ma before the Ar‐Ar closure age of 4517 Ma, possibly even shortly after accretion of its parent body. A metal grain with a Widmanstätten‐like pattern further substantiates slow cooling. The formation age of MIL 05029 is at least as old as the Ar‐Ar age of unshocked L and H chondrites, indicating that endogenous metamorphism on the parent asteroid was still ongoing at the time of impact. Its metallographic cooling rate of approximately 14 °C Ma?1 is similar to that typical for L6 chondrites, suggesting a collisional event on the L chondrite asteroid that produced impact melt at a minimum depth of 5–12 km. The inferred minimum crater diameter of 25–60 km may have shattered the 100–200 km diameter L chondrite asteroid. Therefore, MIL 05029 could record the timing and petrogenetic setting for the observed lack of correlation of cooling rates with metamorphic grades in many L chondrites.  相似文献   

8.
Abstract— Acapulcoites and lodranites are believed to originate on a common parent body and to represent some of the earliest events in the differentiation of the chondritic asteroids. We have conducted isotopic studies of the noble gases He, Ne, Ar, Kr, and Xe, and determinations of the concentrations of the major elements and of the radionuclides 10Be, 26Al, and 36Cl in an attempt to constrain the cosmic‐ray exposure history of two members of the acapulcoite‐lodranite clan recovered in Antarctica: Frontier Mountain (FRO) 95029 and Graves Nunataks (GRA) 95209. From cosmic‐ray‐produced 3He, 21Ne, and 38Ar and appropriate production rates, we derive parent‐body breakup times of 4.59 ± 0.60 and 6.82 ± 0.60 Ma for FOR 95029 and GRA 95209, respectively. These times are consistent with those obtained from the pairs 10Be‐21Ne and 26Al‐21Ne; whereas the times inferred from the pair 36Cl‐36Ar are slightly longer, perhaps because the 36Cl activities decreased as a result of decay on Earth. Terrestrial ages up to ~50 ka for the two meteorites are consistent with the measured 36Cl activities of the metal phases. All acapulcoites and lodranites dated until now show cosmic‐ray exposure ages in the range of 4–10 Ma. This is the same range as that found for the major exposure age cluster of the H chondrites. As a common parent body is improbable on the basis of the O‐isotopic systematics, a common set of impactors might have affected the asteroid belt 4–10 Ma ago.  相似文献   

9.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in 14 fragments from 12 different meteorites: three carbonaceous chondrites, six L chondrites (three most likely paired), one H chondrite, one R chondrite, and one ungrouped chondrite. The data obtained for the CV3 chondrites Ramlat as Sahmah (RaS) 221 and RaS 251 support the hypothesis of exposure age peaks for CV chondrites at approximately 9 Ma and 27 Ma. The exposure age for Shi?r 033 (CR chondrite) of 7.3 Ma is also indicative of a possible CR chondrite exposure age peak. The three L chondrites Jiddat al Harasis (JaH) 091, JaH 230, and JaH 296, which are most likely paired, fall together with Hallingeberg into the L chondrite exposure age peak of approximately 15 Ma. The two L chondrites Shelburne and Lake Torrens fall into the peaks at approximately 40 Ma and 5 Ma, respectively. The ages for Bassikounou (H chondrite) and RaS 201 (R chondrite) are approximately 3.5 Ma and 5.8 Ma, respectively. Six of the studied meteorites show clear evidence for 3He diffusive losses, the deficits range from approximately 17% for one Lake Torrens aliquot to approximately 45% for RaS 211. The three carbonaceous chondrites RaS 221, RaS 251, and Shi?r 033 all have excess 4He, either of planetary or solar origin. However, very high 4He/20Ne ratios occur at relatively low 20Ne/22Ne ratios, which is unexpected and needs further study. The measured 40Ar ages fit well into established systematics. They are between 2.5 and 4.5 Ga for the carbonaceous chondrites, older than 3.6 Ga for the L and H chondrites, and about 2.4 Ga for the R chondrite as well as for the ungrouped chondrite. Interestingly, none of our studied L chondrites has been degassed in the 470 Ma break‐up event. Using the amount of trapped 36Ar as a proxy for noble gas contamination due to terrestrial weathering we are able to demonstrate that the samples studied here are not or only very slightly affected by terrestrial weathering (at least in terms of their noble gas budget).  相似文献   

10.
The Park Forest (L5) meteorite fell in a suburb of Chicago, Illinois (USA) on March 26, 2003. It is one of the currently 25 meteorites for which photographic documentation of the fireball enabled the reconstruction of the meteoroid orbit. The combination of orbits with pre‐atmospheric sizes, cosmic‐ray exposure (CRE), and radiogenic gas retention ages (“cosmic histories”) is significant because they can be used to constrain the meteoroid's “birth region,” and test models of meteoroid delivery. Using He, Ne, Ar, 10Be, and 26Al, as well as a dynamical model, we show that the Park Forest meteoroid had a pre‐atmospheric size close to 180 g cm?2, 0–40% porosity, and a pre‐atmospheric mass range of ~2–6 tons. It has a CRE age of 14 ± 2 Ma, and (U, Th)‐He and K‐Ar ages of 430 ± 90 and 490 ± 70 Ma, respectively. Of the meteorites with photographic orbits, Park Forest is the second (after Novato) that was shocked during the L chondrite parent body (LCPB) break‐up event approximately 470 Ma ago. The suggested association of this event with the formation of the Gefion family of asteroids has recently been challenged and we suggest the Ino family as a potential alternative source for the shocked L chondrites. The location of the LCPB break‐up event close to the 5:2 resonance also allows us to put some constraints on the possible orbital migration paths of the Park Forest meteoroid.  相似文献   

11.
Abstract— The compositionally typical H5 chondrite St‐Robert has an exposure age, 7.8 Ma, indistinguishable from that of the main cluster of H chondrites. Small values of the cosmogenic 22Ne/21Ne ratio in interior samples imply a pre‐atmospheric radius on the order of 40 cm. Sample depths based on tracks and the production rates of Bhattacharya et al. (1973) range from 6 to ~40 cm and are generally larger than depths estimated from published 60Co activities, perhaps because the track production rates adopted are too high. Depth profiles of the production rates of 14C, 36Cl, 26Al, 10Be, and 21Ne in stony material show increases with depth and reach levels 5% to 15% higher than expected from modeling calculations. The maximum concentrations in St‐Robert are, however, generally comparable to those measured for the L5 chondrite, Knyahinya, whose pre‐atmospheric radius of ~45 cm is thought to lead to the maximum possible production rates in chondrites. We infer that the pre‐atmospheric radius of St‐Robert was within 5 cm of the value that supports maximum production rates (i.e., 45 ± 5 cm). This radius corresponds to a pre‐atmospheric mass of (1.3 ± 0.4) × 103 kg. The agreement of exposure ages for St‐Robert obtained in several different ways and the similarity of the depth profiles for 14C, 26Al, 10Be, and 21Ne argue against a lengthy pre‐exposure of St‐Robert on the parent body and against a two‐stage exposure after launch from the parent body. Following Morbidelli and Gladman (1998), we suggest that St‐Robert was chipped from deep in its parent body, spent the next 7–8 Ma without undergoing a major collision, was nudged gradually into an orbital resonance with Jupiter, and then traveled quickly to Earth.  相似文献   

12.
Abstract— To constrain the metamorphic history of the H‐chondrite parent body, we dated phosphates and chondrules from four H6 chondritic meteorites using U‐Pb systematics. Reconnaissance analyses revealed that only Estacado had a sufficiently high 206Pb/204Pb ratio suitable for our purposes. The Pb‐Pb isochron date for Estacado phosphates is measured to be 4492 ± 15 Ma. The internal residue‐second leachate isochron for Estacado chondrules yielded the chondrule date of 4546 ± 18 Ma. An alternative age estimate for Estacado chondrules of 4527.6 ± 6.3 Ma is obtained from an isochron including two chondrules, two magnetically separated fractions, and four bulk chondrite analyses. This isochron date might represent the age of termination of Pb diffusion from the chondrules to the matrix. From these dates and previously established closure temperatures for Pb diffusion in phosphates and chondrules, we estimate an average cooling rate for Estacado between 5.5 ± 3.2 Myr/°C and 8.3 ± 5.0 Myr/°C. Using previously published results for Ste. Marguerite (H4) and Richardton (H5), our data reveal that the cooling rates of H chondrites decrease markedly with increasing metamorphic grade, in agreement with the predictions of the “onion‐shell” asteroid model. Several issues, however, need to be addressed before confirming this model for the H‐chondrite parent body: the discrepancies between peak metamorphic temperatures established by various mineral thermometers need to be resolved, diffusion and other mechanisms of element migration in polycrystalline solids must be better understood, and dating techniques should be further improved.  相似文献   

13.
Abstract— The Campos Sales meteorite fell close to the town of Campos Sales in the northeastern Brazilian state of Ceará (7°2′ S, 40°10′ W) on 1991 January 31 at 10:00 P.M. (local time). Several fragments were recovered from an area estimated to be 1 × 3 km. The stone is an ordinary L5 chondrite (Fa25.0 and FS21.6) and is lightly shocked (S1). Metal phases present are kamacite, tetrataenite, and antitaenite. Noble gases He, Ne, Ar, Kr, and Xe have been analyzed in two bulk samples of Campos Sales. All exposure ages based on determination of cosmogenic 3He, 21Ne, 38Ar, 83Kr, and 126Xe abundances and on the cosmogenic 81Kr/83Kr ratio agree well, which suggests no gas loss during cosmic-ray exposure. The cosmic-ray exposure age is 23.3 ± 1.0 Ma, which falls in the range observed for L5 chondrites (20–30 Ma). The gas-retention ages indicate He loss that must have occurred prior to or during ejection from the L-chondrite parent body.  相似文献   

14.
Based on sediment‐dispersed extraterrestrial spinel grains in the Bottaccione limestone section in Italy, we reconstructed the micrometeorite flux to Earth during the early Paleocene. From a total of 843 kg of limestone, 86 extraterrestrial spinel grains (12 grains > 63 μm, and 74 in the 32–63 μm fraction) have been recovered. Our results indicate that the micrometeorite flux was not elevated during the early Paleocene. Ordinary chondrites dominated over achondritic meteorites similar to the recent flux, but H chondrites dominated over L and LL chondrites (69%, 22%, and 9%, respectively). This H‐chondrite dominance is similar to that recorded within an enigmatic 3He anomaly (70, 27, and 3%) in the Turonian, but different from just before this 3He anomaly and in the early Cretaceous, where ratios are similar to the recent flux (~45%, 45%, and 10%). The K‐Ar isotopic ages of recently fallen H chondrites indicate a small impact event on the H‐chondrite parent body ~50 to 100 Ma ago. We tentatively suggest that this event is recorded by the Turonian 3He anomaly, resulting in an H‐chondrite dominance up to the Paleocene. Our sample spanning the 20 cm above the Cretaceous–Paleogene (K–Pg) boundary did not yield any spinel grains related to the K–Pg boundary impactor.  相似文献   

15.
Abstract— This study presents the first determinations of 39Ar‐40Ar ages of R chondrites for the purpose of understanding the thermal history of the R chondrite parent body. The 39Ar‐40Ar ages were determined on whole‐rock samples of four R chondrites: Carlisle Lakes, Rumuruti, Acfer 217, and Pecora Escarpment #91002 (PCA 91002). All samples are breccias except for Carlisle Lakes. The age spectra are complicated by recoil and diffusive loss to various extents. The peak 39Ar‐40Ar ages of the four chondrites are 4.35, ?4.47 ± 0.02, 4.30 ± 0.07 Ga, and 4.37 Ga, respectively. These ages are similar to Ar‐Ar ages of relatively unshocked ordinary chondrites (4.52–4.38 Ga) and are older than Ar‐Ar ages of most shocked ordinary chondrites («4.2 Ga). Because the meteorites with the oldest (Rumuruti, ?4.47 Ga) and the youngest (Acfer 217, ?4.30 Ga) ages are both breccias, these ages probably do not record slow cooling within an undisrupted asteroidal parent body. Instead, the process of breccia formation may have differentially reset the ages of the constituent material, or the differences in their age spectra may arise from mixtures of material that had different ages. Two end‐member type situations may be envisioned to explain the age range observed in the R chondrites. The first is if the impact(s) that reset the ages of Acfer 217 and Rumuruti was very early. In this case, the ?170 Ma maximum age difference between these meteorites may have been produced by much deeper burial of Acfer 217 than Rumuruti within an impact‐induced thick regolith layer, or within a rubble pile type parent body following parent body re‐assembly. The second, preferred scenario is if the impact that reset the age of Acfer 217 was much later than that which reset Rumuruti, then Acfer 217 may have cooled more rapidly within a much thinner regolith layer. In either scenario, the oldest age obtained here, from Rumuruti, provides evidence for relatively early (?4.47 Ga) impact events and breccia formation on the R chondrite parent body.  相似文献   

16.
Abstract— We determined the mineralogical and chemical characteristics and the He, Ne, and Ar isotopic abundances of 2 meteorites that fell in China and of 2 meteorites that were recovered by the 15th Chinese Antarctic Research Expedition. Guangmingshan (H5), Zhuanghe (H5), and Grove Mountain (GRV) 98002 (L5) yield cosmic ray exposure (CRE) ages of 68.7 ± 10.0 Ma, 3.8 ± 0.6 Ma, and 17.0 ± 2.5 Ma, respectively. These ages are within the range typically observed for the respective meteorite types. GRV 98004 (H5) had an extremely short parent body‐Earth transfer time of 0.052 ± 0.008 Ma. Its petrography and mineral chemistry are indistinguishable from other typical H5 chondrites. Only 3 other meteorites exist with similarly low CRE ages: Farmington (L5), Galim (LL6), and ALH 82100 (CM2). We show that several asteroids in Earth‐crossing orbits, or in the main asteroid belt with orbits close to an ejection resonance, are spectrally matching candidates and may represent immediate precursor bodies of meteorites with CRE ages ≤0.1 Ma.  相似文献   

17.
Abstract— The St‐Robert H5 chondrite yields a mineral/whole‐rock Pb‐Pb age of 4565 ± 23 Ma (2σ) comparable to the accepted age of most chondrites. The regression of chondrule data give a similar age of 4566 ± 7 Ma (2σ). These results imply that no major perturbation affected the Pb‐Pb systematics of this meteorite's parent body within the first few billion years following its accretion. Re and Os concentrations along with Os isotopic compositions of whole‐rock fragments, surface fusion crusts and metal phases are also reported. The whole rock measurements for this ordinary chondrite are characterized by high Re/Os ratio coupled with relatively high 187Os/188Os (compared to average ordinary chondrites), that we interpret as a long term Re enrichment. As for most chondrites, no precise geochronological information could be extracted from the Re/Os systematics, although most data plot near the IIIAB reference isochron (Smoliar et al. 1996). From the fusion crust results, we rule out the possibility that atmospheric entry caused the perturbations in the Re‐Os system, since melted crust analysis yields among the most concordant data points. Evidence from metal phases suggests that a very recent process perturbed the isochron, relocating Re from kamacite toward troilite.  相似文献   

18.
Northwest Africa (NWA) 11042 is a heavily shocked achondrite with medium‐grained cumulate textures. Its olivine and pyroxene compositions, oxygen isotopic composition, and chromium isotopic composition are consistent with L chondrites. Sm‐Nd dating of its primary phases shows a crystallization age of 4100 ± 160 Ma. Ar‐Ar dating of its shocked mineral maskelynite reveals an age of 484.0 ± 1.5 Ma. This age coincides roughly with the breakup event of the L chondrite parent body evident in the shock ages of many L chondrites and the terrestrial record of fossil L chondritic chromite. NWA 11042 shows large depletions in siderophile elements (<0.01×CI) suggestive of a complex igneous history involving extraction of a Fe‐Ni‐S liquid on the L chondrite parent body. Due to its relatively young crystallization age, the heat source for such an igneous process is most likely impact. Because its mineralogy, petrology, and O isotopes are similar to the ungrouped achondrite NWA 4284 (this work), the two meteorites are likely paired and derived from the same parent body.  相似文献   

19.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   

20.
Abstract— Isotopic ages of meteorites that indicate chronometer resetting due to impact heating are summarized. Most of the ages were obtained by the 39Ar-40Ar technique, but several Rb-Sr, Pb-Pb, and Sm-Nd ages also suggest some degree of impact resetting. Considerations of experimental data on element diffusion in silicates suggest that various isotopic chronometers ought to differ in their ease of resetting during shock heating in the order K-Ar (easiest), Rb-Sr, Pb-Pb, and Sm-Nd, which is approximately the order observed in meteorites. Partial rather than total chronometer resetting by impacts appears to be the norm; consequently, interpretation of the event age is not always straightforward. Essentially all 39Ar-40Ar ages of eucrites and howardites indicate partial to total resetting in the relatively narrow time interval of 3.4–4.1 Ga ago (1 Ga = 109 years). Several disturbed Rb-Sr ages appear consistent with this age distribution. This grouping of ages and the brecciated nature of many eucrites and all howardites argues for a large-scale impact bombardment of the HED parent body during the same time period that the Moon received its cataclysmic bombardment. Other meteorite parent bodies such as those of mesosiderites, some chondrites, and IIE irons also may have experienced this bombardment. These data suggest that the early bombardment was not lunar specific but involved much of the inner Solar System, and may have been caused by breakup of a larger planetismal. Although a few chondrites show evidence of age resetting ~3.5–3.9 Ga ago, most impact ages of chondrites tend to fall below 1.3 Ga in age. A minimum of ~4 impact events, including events at 0.3, 0.5, 1.2, and possibly 0.9 Ga appear to be required to explain the younger ages of H, L, and LL chondrites, although additional events are possible. Most L chondrites show evidence of shock, and the majority of 39Ar-40Ar ages of L chondrites fall near 0.5 Ga. The L chondrite parent body apparently experienced a major impact at this time, which may have disrupted it. The observations (1) that lunar highland rocks experienced major impact resetting of various isotopic chronometers ~3.7–4.1 Ga ago; (2) that the HED parent body experienced widespread impact resetting of the K-Ar chronometer but only modest disturbance of other isotopic systems, during a similar time period; (3) that ordinary chondrite parent bodies show much more recent and less extensive impact resetting; and (4) that impacts, which initiated cosmic-ray exposure of most stone meteorites almost never reset isotopic chronometers, may all be a consequence of relative parent body size. Greater degrees of isotopic chronometer resetting occur in larger and warmer impact ejecta deposits that cool slowly. The relatively greater size of bodies like the Moon and Vesta (assumed to be the parent asteroid of HED meteorites) both permit such favorable ejecta deposits to occur more easily compared to smaller parent bodies (generally assumed for chondrites) and also protect parent objects from collisional disruption. Thus, impacts on larger bodies would tend to more easily reset chronometers, consistent with the observed relative ease of resetting of Moon (easiest), HED, chondrites and of K-Ar (easiest), Rb-Sr, other chronometers. In contrast, the more recent impact ages of chondrites are postulated to represent collisional disruption of smaller parent objects whose fragments are more readily removed from the meteorite source reservoirs. Impacts that initiate cosmic-ray exposure are mostly small in scale and produce little heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号