首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
The crystalline form of magnetic spherules, retrieved from the Pleistocene and Holocene mineral and organic surface sediments at the Northern foreland of Morasko meteorite-impact site, have been determined. While the magnetite (Fe3O4) composition of the spherules prevails, also hematite, maghemite and plagioclase crystalline inclusions have been observed. The magnetite form varies from amorphous, through fine powder, rough powder, holocrystalline to single crystals, as well as mixed forms, such as powder and holocrystalline, or amorphous and holocrystalline. The relieves on the surface of the spherules reflect the size and shape of the crystallites. The morphology of the spherules, their chemical composition and structure have been characterized and discussed in relation to the Morasko-Meteorite fall, and possible other cosmic, geological or anthropogenic origins.  相似文献   

2.
Abstract— Crystallographic relationships between magnetite, sulfides, and carbonate rosettes in fracture zones of the Allan Hills (ALH) 84001 Martian meteorite have been studied using analytical electron microscopy. We have focused on those magnetite grains whose growth mechanisms can be rigorously established from their crystallographic properties. Individual magnetite nanocrystals on the surfaces of carbonates are epitaxially intergrown with one another in “stacks” of single-domain crystals. Other magnetite nanocrystals are epitaxially intergrown with the surfaces of the carbonate substrates. The observed magnetite/carbonate (hkl) Miller indices orientation relationships are (?, ?, 3)m ‖ (1, ?, 0)c and (1, ?, 1)m ‖ (0,0, 3)c with lattice mismatches of ~13% and ~11%, respectively. Epitaxy is a common mode of vapor-phase growth of refractory oxides like magnetite, as is the spiral growth about axial screw dislocations previously observed in other magnetite nanocrystals in ALH 84001. Epitaxy rules out intracellular precipitation of these magnetites by (Martian) organisms, provides further evidence of the high-temperature (>120 °C) inorganic origins of magnetite in ALH 84001, and indicates that the carbonates also have been exposed to elevated temperatures.  相似文献   

3.
Abstract— In martian orthopyroxenite ALH 84001, pockets of feldspathic glass frequently contain carbonate masses that have been disrupted and dispersed within feldspathic shock melt as a result of impact(s). Transmission electron microscope studies of carbonate fragments embedded within feldspathic glass show that the fragments contain myriad, nanometer‐sized magnetite particles with cuboid, irregular, and teardrop morphologies, frequently associated with voids. The fragments of carbonate must have been incorporated into the melt at temperatures of ?900°C, well above the upper thermal stability of siderite (FeCO3), which decomposes to produce magnetite and CO2 below ?450°C. These observations suggest that most, if not all, of the fine‐grained magnetite associated with Fe‐bearing carbonate in ALH 84001 could have been formed as result of the thermal decomposition of the siderite (FeCO3) component of the carbonate and is not due to biological activity.  相似文献   

4.
Abstract— Here we report on the stratigraphic distribution and chemical composition of Ni‐rich spinel, a specific mineral tracer of meteorite impacts, in the Fuente Caldera section in Spain. A major peak in spinel abundance is observed in a biostratigraphic interval defined by the last occurrence of the planktic foraminifera Porticulasphaera semiinvoluta and the first occurrence of the planktic foraminifera Turborotalia cunialensis. Two other peaks of lower abundances are observed higher up in the same biostratigraphic interval, but geochemical considerations suggest that they likely originate from redeposition by turbiditic currents. Biostratigraphic correlations with the global stratotype section and point for the Eocene/Oligocene boundary of Massignano in Italy give an age of 35.4 ± 0.2 Ma (1s?) for the major peak. This age is indistinguishable from the age of the impact horizon at Massignano (35.5 ± 0.2 Ma) and within the age uncertainties for the Popigai (35.7 ± 0.2 Ma) and Chesapeake Bay (35.5 ± 0.5 Ma) craters. The Fuente Caldera spinel, as the Massignano spinel, is assumed to be a relic mineral of microkrystites, which are believed to derive from a unique source related to the Popigai impact crater. The morphologies and Cr compositions of the Fuente Caldera and Massignano spinel crystals are markedly different, however: the Fuente Caldera spinel occurs mostly as octahedral and skeletal crystals with 85% of the grains belonging to the Cr‐rich magnetite series and 15% to the Fe‐rich chromite series, whereas the Massignano spinel occurs mostly as dendritic crystals with 90% of the grains belonging to the Cr‐poor magnetite series. It is unlikely that these differences are the result of post‐depositional alteration processes because the compositions of the crystals, as well as their morphologies, are in general very similar to those reported for primary spinel crystals, i.e., spinel crystals present in meteorite fusion crust or synthetized from meteoritic material. In addition, spinel crystals have quite homogeneous compositions except for a few grains (<10%) showing Cr zonations, but these are assigned to primary crystallization processes. One possible explanation that is consistent with a single impact event producing spatial variations in spinel compositions and morphologies is that microkrystites are locally generated by the ablation in the atmosphere of impact debris. An alternative explanation is that Fuente Caldera and Massignano microkrystites derive from two closely spaced impact events, which however requires another, so‐far unknown source crater for microkrystites.  相似文献   

5.
Observations under the scanning electron microscope have made it possible to confirm the fact that abnormal magnetite forms do exist in the Orgueil meteorite: platelets, stackings of platelets, and framboids. The presence of spiral morphologies has been proved positively. A new typical form was identified as nodules with concavities. The morphological details of these various forms are described. The importance of the study of magnetite forms in the reconstruction of the thermodynamic conditions existing in the medium where Type I carbonaceous meteorites originated (protoplanetary cloud?) is briefly emphasized.  相似文献   

6.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

7.
Bulk isotopic and elemental compositions of CV and CK chondrites have led to the suggestion that both originate from the same asteroid. It has been argued that magnetite compositions also support this model; however, magnetite has been studied almost exclusively in the equilibrated (type 4‐6) CKs. Magnetite in seven unequilibrated CKs analyzed here is enriched in MgO, TiO2, and Al2O3 relative to the equilibrated CKs, suggesting that magnetite compositions are affected by metamorphism. Magnetite in CKs is compositionally distinct from CVs, particularly in abundances of Cr2O3, NiO, and TiO2. Although there are minor similarities between CV and equilibrated CK chondrite magnetite, this is contrary to what we would expect if the CVs and CKs represent a single metamorphic sequence. CV magnetite should resemble CK3 magnetite, as both were metamorphosed to type 3 conditions. Oxygen fugacities and temperatures of CVox and CK chondrites are also difficult to reconcile using existing CV‐CK parent body models. Mineral chemistries, which eliminate issues of bulk sample heterogeneity, provide a reliable alternative to techniques that involve a small amount of sample material. CV and CK chondrite magnetite has distinct compositional differences that cannot be explained by metamorphism.  相似文献   

8.
Abstract— We have studied carbonate and associated oxides and glasses in a demountable section of Allan Hills 84001 (ALH 84001) using optical, scanning, and transmission electron microscopy (TEM) to elucidate their origins and the shock history of the rock. Massive, fracture‐zone, and fracture‐filling carbonates in typical locations were characterized by TEM, X‐ray microanalysis, and electron diffraction in a comprehensive study that preserved textural and spatial relationships. Orthopyroxene is highly deformed, fractured, partially comminuted, and essentially unrecovered. Lamellae of diaplectic glass and other features indicate shock pressures >30 GPa. Bridging acicular crystals and foamy glass at contacts of orthopyroxene fragments indicate localized melting and vaporization of orthopyroxene. Carbonate crystals are >5 mm in size, untwinned, and very largely exhibit the R3c calcite structure. Evidence of plastic deformation is generally found mildly only in fracture‐zone and fracture‐filling carbonates, even adjacent to highly deformed orthopyroxene, and appears to have been caused by low‐stress effects including differential shrinkage. High dislocation densities like those observed in moderately shocked calcite are absent. Carbonate contains impactderived glasses of plagioclase, silica, and orthopyroxene composition indicating brief localized impact heating. Stringers and lenses of orthopyroxene glass in fracture‐filling carbonate imply flow of carbonates and crystallization during an impact. Periclase (MgO) occurs in magnesite as 30–50 nm crystals adjacent to voids and negative crystals and as ?1 μm patches of 3 nm crystals showing weak preferred orientation consistent with (111)MgO//(0001)carb, as observed in the thermal decomposition of CaCO3 to CaO. Magnetite crystals that are epitaxially oriented at voids, negative crystals, and microfractures clearly formed in situ. Fully embedded, faceted magnetites are topotactically oriented, in general with (111)mag//(0001)carb, so that their oxygen layers are aligned. In optically opaque rims, magnetites are more irregularly shaped and, except for the smallest crystals, poorly aligned. All magnetite and periclase crystals probably formed by exsolution from slightly non‐stoichiometric, CO2‐poor carbonate following impact‐induced thermal decomposition. Any magnetites that existed in the rock before shock heating could not have preserved evidence for biogenic activity.  相似文献   

9.
Lunar regolith breccias are temporal archives of magmatic and impact bombardment processes on the Moon. Apollo 16 sample 60016 is an “ancient” feldspathic regolith breccia that was converted from a soil to a rock at ~3.8 Ga. The breccia contains a small (70 × 50 μm) rock fragment composed dominantly of an Fe‐oxide phase with disseminated domains of troilite. Fragments of plagioclase (An95‐97), pyroxene (En74‐75, Fs21‐22,Wo3‐4), and olivine (Fo66‐67) are distributed in and adjacent to the Fe‐oxide. The silicate minerals have lunar compositions that are similar to anorthosites. Mineral chemistry, synchrotron X‐ray absorption near edge spectroscopy (XANES) and X‐ray diffraction (XRD) studies demonstrate that the oxide phase is magnetite with an estimated Fe3+/ΣFe ratio of ~0.45. The presence of magnetite in 60016 indicates that oxygen fugacity during formation was equilibrated at, or above, the Fe‐magnetite or wüstite–magnetite oxygen buffer. This discovery provides direct evidence for oxidized conditions on the Moon. Thermodynamic modeling shows that magnetite could have been formed from oxidization‐driven mineral replacement of Fe‐metal or desulphurisation from Fe‐sulfides (troilite) at low temperatures (<570 °C) in equilibrium with H2O steam/liquid or CO2 gas. Oxidizing conditions may have arisen from vapor transport during degassing of a magmatic source region, or from a hybrid endogenic–exogenic process when gases were released during an impacting asteroid or comet impact.  相似文献   

10.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

11.
Abstract– We have used synchrotron Fe‐XANES, XRS, microRaman, and SEM‐TEM analyses of Stardust track 41 slice and track 121 terminal area slices to identify Fe oxide (magnetite‐hematite and amorphous oxide), Fe‐Ti oxide, and V‐rich chromite (Fe‐Cr‐V‐Ti‐Mn oxide) grains ranging in size from 200 nm to ~10 μm. They co‐exist with relict FeNi metal. Both Fe‐XANES and microRaman analyses suggest that the FeNi metal and magnetite (Fe2O3FeO) also contain some hematite (Fe2O3). The FeNi has been partially oxidized (probably during capture), but on the basis of our experimental work with a light‐gas gun and microRaman analyses, we believe that some of the magnetite‐hematite mixtures may have originated on Wild 2. The terminal samples from track 121 also contain traces of sulfide and Mg‐rich silicate minerals. Our results show an unequilibrated mixture of reduced and oxidized Fe‐bearing minerals in the Wild 2 samples in an analogous way to mineral assemblages seen in carbonaceous chondrites and interplanetary dust particles. The samples contain some evidence for terrestrial contamination, for example, occasional Zn‐bearing grains and amorphous Fe oxide in track 121 for which evidence of a cometary origin is lacking.  相似文献   

12.
We report the ratio of the initial carbon available as CO that forms gas‐phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface‐mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume “filamentous” structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain–grain sticking during low‐velocity collisions.  相似文献   

13.
Abstract– The nakhlites, a subgroup of eight clinopyroxenites thought to come from a single geological unit at the Martian surface, show melt inclusions in augite and olivine. In contrast to olivine‐hosted melt inclusions, augite‐hosted melt inclusions are not surrounded by fractures, and are thus considered preferential candidates for reconstructing parent liquid compositions. Furthermore, two types of augite‐hosted melt inclusion have been defined and characterized in four different nakhlites (Northwest Africa [NWA] 817, Nakhla, Governador Valadares, and NWA 998): Type‐I isolated inclusions in augite cores that contain euhedral to subhedral augite, Ti‐magnetite, and pigeonite plus silica‐rich glass and a gas bubble; Type‐II microinclusions that form trails crosscutting host augite crystals. Fast‐heating experiments were performed on selected pristine primary augite‐hosted melt inclusions from these four samples. Of these, only data from Nakhla were considered robust for reconstruction of a nakhlite parental magma composition (NPM). Based upon careful petrographic selection and consideration of iron‐magnesium ratios, our data are used to propose an NPM, which is basaltic (49.1 wt% SiO2), of high Ca/Al (1.95), and K2O‐poor (0.32 wt%). Thermodynamic modeling at an oxygen fugacity one log unit below the QFM buffer using the MELTS and PETROLOG programs implies that Mg‐rich olivine was not a liquidus phase for this composition. Our analysis is used to suggest that olivine megacrysts found in the nakhlites are unlikely to have coprecipitated with augite, and thus may have been introduced during or subsequent to accumulation in the magma chamber, possibly from more evolved portions of the same chamber.  相似文献   

14.
Abstract— The Kaidun meteorite contains carbonaceous chondrite (CM1) clasts that have been highly altered by reactions with hydrothermal fluids. Pyrrhotite in these clasts occurs as unusual needles wrapped by sheaths of phyllosilicate, and pentlandite forms veins that crosscut aggregates of phyllosilicate and garnet but not pyrrhotite. The isotopic compositions of S (δ34SCDT) in individual sulfide grains, measured by ion micro-probe, are fractionated compared to troilite in ordinary chondrites. The S in Kaidun sulfides is isotopically light (as much as ?4.2% for pyrrhotite and ?5.7%0 for pentlandite), unlike sulfides in other carbonaceous chondrites, which are enriched in 34S. The unusual S-isotopic composition of these texturally unique sulfides supports the hypothesis that Kaidun CM1 clasts were pervasively altered under extreme thermal conditions, possibly by fluids that had lost isotopically heavy SO2.  相似文献   

15.
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe‐K X‐ray absorption spectroscopy with in situ transmission XRD and X‐ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s?1, using a light‐gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.  相似文献   

16.
The discovery of CO2, CH4, and N2 in a plume at Enceladus provides useful clues about the chemistry and evolution of this moon of Saturn. Here, we use chemical equilibrium and kinetic calculations to estimate the oxidation state of hydrothermal systems on early Enceladus, with the assumption that the plume's composition was inherited from early hydrothermal fluids. Chemical equilibrium calculations are performed using the CO2/CH4 ratio in the plume, and kinetic calculations are conducted using equations from fluid dynamics and chemical kinetics. Our results suggest that chemical equilibrium between CO2 and CH4 would have been reachable at temperatures above ∼200 °C in hydrothermal systems. The oxidation state of the hydrothermal systems would have been close to the pyrrhotite-pyrite-magnetite (PPM) or fayalite-magnetite-quartz (FMQ) redox buffer (i.e., terrestrial-like) if the plume's CO2 and CH4 equilibrated in hydrothermal systems long ago. As for minerals, we suggest that iron metal would have been oxidized to magnetite by the escape of H2 from the early satellite. Our calculations also indicate that, assuming CO2 and CH4 reached chemical equilibrium, magnetite would not have been oxidized to hematite in hydrothermal systems, perhaps due to insufficient H2 escape. It is shown that, if Enceladus accreted as much NH3 as comets contain, the presence of N2 and deficiency of NH3 in the plume can be understood in the context of chemical equilibrium in the C-N-O-H system. We conclude by proposing an evolutionary hypothesis in which the fairly oxidized nature of the plume can be explained by a brief episode of oxidation caused by short-lived radioactivity. These suggestions can be rigorously tested by acquiring gravity and isotopic data in the future.  相似文献   

17.
The Eridanus galaxies follow the well-known radio—FIR correlation. The majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies that have a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (L 20cm > 1023 W Hz−1) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (L 20cm ∼ 1022 W Hz−1) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.  相似文献   

18.
By means of nanoscale surface observation, we have proposed a new approach for investigating fine crystals of cosmic materials to reveal their origin and growth conditions. Several different morphologies of polyhedral fine olivines with faceted faces have been found in Allende carbonaceous chondrite (4.5 byr in geochronological age). In the present work, molecular level topography of the faceted matrix olivine by Atomic Force Microscopy (AFM) has successfully been performed. The matrix olivine found to have preserved growth step pattern on its surface even though quite long time has passed since they formed in the early Solar System. The surface pattern suggests that the faceted matrix olivine could have been condensed from the gas phase, and possibly that these olivine crystals had continued to grow under a rapid cooling condition (0.1-1 K s−1). The estimated cooling rate agrees well with predictions based on hypothetical rapid heating and cooling events such as shock wave heating.  相似文献   

19.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.  相似文献   

20.
We have sampled sulfide grains from one pristine CM2 chondrite (Yamato [Y‐] 791198), one thermally metamorphosed CM2 chondrite (Y‐793321), and two anomalous, metamorphosed CM/CI‐like chondrites (Y‐86720 and Belgica [B‐] 7904) by the focused ion beam (FIB) technique and studied them by analytical transmission electron microscopy (TEM). Our study aims at exploring the potential of sulfide assemblages and microstructures to decipher processes and conditions of chondrite petrogenesis. Complex exsolution textures of pyrrhotite (crystallographic NC‐type with ≈ 6), troilite, and pentlandite occur in grains of Y‐791198 and Y‐793321. Additionally, polycrystalline 4C‐pyrrhotite‐pentlandite‐magnetite aggregates occur in Y‐791198, pointing to diverse conditions of gas–solid interactions in the solar nebula. Coarser exsolution textures of Y‐793321 grains indicate higher long‐term average temperatures in the <100 °C range compared to Y‐791198 and other CM chondrites. Sulfide mineralogy of Y‐86720 and B‐7904 is dominated by aggregates of pure troilite and metal, indicating metamorphic equilibration at sulfur fugacities (fS2) of the iron‐troilite buffer. Absence of magnetite in equilibrium with sulfide and metal in Y‐86720 indicates higher peak temperatures compared with B‐7904, in which coexistence of troilite, metal, and magnetite constrains metamorphic temperature to less than 570 °C. NC‐pyrrhotite occurs in both meteorites as nm‐wide rims on troilite grains and, together with frequent anhydrite, indicates a retrograde metamorphic stage at higher fS2 slightly above the fayalite‐magnetite‐quartz‐pyrrhotite buffer. Fine‐grained troilite‐olivine intergrowths in both meteorites suggest the pre‐metamorphic presence of tochilinite‐serpentine interlayer phases, pointing to mineralogical CM affinity. Pseudomorphs after euhedral pyrrhotite crystals in Y‐86720 in turn suggest CI affinity as do previously published O isotopic data of both meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号