首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract– We present the geology and interpreted shock features of the Suavjärvi circular structure. Suavjärvi is a circular feature (illustrated by satellite imagery, topography, and magnetic data) located in the central part of the Karelian Craton (lat. 63°07′N, long. 33°23′E). To date, little information on the geologic and impact features of the Suavjärvi structure is available in the literature. The structure is characterized by gravity and magnetic lows and disruption of the regional magnetic fabric. In the northeastern and southwestern parts of the structure, several erosional remnants of highly disturbed rocks occur referred to as monomict and polymict megabreccia. These comprise blocks of both basement granitoids and supracrustal greenstone rocks. The impact origin of polymict megabreccia and therefore of the Suavjärvi structure is confirmed by observations of closely spaced planar microstructures at angles consistent with planes that have Miller indices indicative of impact shock effects, mostly of ω{10¯13}. The Suavjärvi is considered to be a remnant of a deeply eroded and metamorphosed impact structure, which has a diameter of 16 km and was formed during the Paleoproterozoic (older than 2.2 Ga); this is inferred from the age of the overlying volcanic‐sedimentary Jatulian sequence. Suavjärvi underwent regional metamorphism that resulted in obliteration or transformation of shock metamorphic effects. Massive sulfides occur within megabreccia; originating probably from postimpact redeposition of pre‐existing mineralization.  相似文献   

2.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

3.
4.
The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk‐Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been investigated by various geochemical techniques in order to improve the record of trace element characteristics for these lithologies and to attempt to detect and constrain a possible meteoritic component. The bedrock units of the ICDP drill core reflect the felsic volcanics that are predominant in the crater vicinity. The overlying suevites comprise a mixture of all currently known target lithologies, dominated by felsic rocks but lacking a discernable meteoritic component based on platinum group element abundances. The reworked suevite, directly overlain by lake sediments, is not only comparatively enriched in shocked minerals and impact glass spherules, but also contains the highest concentrations of Os, Ir, Ru, and Rh compared to other El'gygytgyn impactites. This is—to a lesser extent—the result of admixture of a mafic component, but more likely the signature of a chondritic meteoritic component. However, the highly siderophile element contribution from target material akin to the mafic blocks of the ICDP drill core to the impactites remains poorly constrained.  相似文献   

5.
Abstract— Argon-40/Argon-39 laser spot fusion dating of pseudotachylyte from the ~25 km diameter Rochechouart impact structure of western-central France yields a matrix age of 214 ± 8 Ma (2s?). Field evidence indicates that the pseudotachylyte was generated during the modification stage of the impact process, probably during transient cavity collapse. This new age is considerably older than the previously accepted age of 186 ± 8 Ma for this structure, which was obtained from hydrothermally-altered melt sheet samples. The new age is in accordance with earlier paleomagnetic and fission track data, which indicated that Rochechouart was formed during the late Triassic. Moreover, the new determination is in agreement with the regional geological setting and field relations of the structure. The new age of 214 ± 8 Ma falls within the Norian stage of the Triassic system.  相似文献   

6.
New pollen and radiocarbon data from an 8.6-m coastal section, Cape Shpindler (69°43′N; 62°48′E), Yugorski Peninsula, document the latest Pleistocene and Holocene environmental history of this low Arctic region. Twelve AMS 14C dates indicate that the deposits accumulated since about 13,000 until 2000 radiocarbon years BP. A thermokarst lake formed ca. 13,000–12,800 years BP, when scarce arctic tundra vegetation dominated the area. By 12,500 years BP, a shallow lake existed at the site, and Arctic tundra with Poaceae, Cyperaceae, Salix, Saxifraga, and Artemisia dominated nearby vegetation. Climate was colder than today. Betula nana became dominant during the Early Preboreal period about 9500 years BP, responding to a warm event, which was one of the warmest during the Holocene. Decline in B. nana and Salix after 9500 years BP reflects a brief event of Preboreal cooling. A subsequent increase in Betula and Alnus fruticosa pollen percentages reflects amelioration of environmental conditions at the end of Preboreal period (ca. 9300 years BP). A decline in arboreal taxa later, with a dramatic increase in herb taxa, reflects a short cold event at about 9200 years BP. The pollen data reflect a northward movement of tree birch, peaking at the middle Boreal period, around 8500 years BP. Open Betula forest existed on the Kara Sea coast of the Yugorski Peninsula during the Atlantic period (8000–4500 years BP), indicating that climate was significantly warmer than today. Deteriorating climate around the Atlantic–Subboreal boundary (ca. 4500 years BP) is recorded by a decline in Betula percentages. Sedimentation slowed at the site, and processes of denudation and/or soil formation started at the beginning of the Subatlantic period, when vegetation cover on Yugorski Peninsula shifted to near-modern assemblages.  相似文献   

7.
We report paleomagnetic directions from the target rocks of the Tunnunik impact structure, as well as from lithic impact breccia dikes that formed during the impact event. The target sedimentary rocks have been remagnetized after impact‐related tilting during a reverse polarity interval. Their magnetization is unblocked up to 350 °C. The diabase dikes intruding into these sediments retained their original magnetization which unblocks above 400 °C. The impact breccia records a paleomagnetic direction similar to that of the overprints in the target sedimentary rocks. The comparison of the resulting virtual geomagnetic pole for the Tunnunik impact structure with the apparent polar wander path for Laurentia combined with biostratigraphic constraints from the target sedimentary rocks is most consistent with an impact age in the Late Ordovician or Silurian, around 430–450 Ma, soon after the deposition of the youngest impacted sedimentary rocks. Our results from the overprinted sedimentary rocks and diabase dikes imply that the postimpact temperature of the studied rocks was about 350 °C.  相似文献   

8.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

9.
The 3.6 Ma El'gygytgyn impact structure, located in northeast Chukotka in Arctic Russia, was largely formed in acidic volcanic rocks. The 18 km diameter circular depression is today filled with Lake El'gygytgyn (diameter of 12 km) that contains a continuous record of lacustrine sediments of the Arctic from the past 3.6 Myr. In 2009, El'gygytgyn became the focus of the International Continental Scientific Drilling Program (ICDP) in which a total of 642.4 m of drill core was recovered. Lithostratigraphically, the drill cores comprise lacustrine sediment sequences, impact breccias, and deformed target rocks. The impactite core was recovered from 316.08 to 517.30 meters below lake floor (mblf). Because of the rare, outstanding recovery, the transition zone, ranging from 311.47 to 317.38 m, between the postimpact lacustrine sediments and the impactite sequences, was studied petrographically and geochemically. The transition layer comprises a mixture of about 6 m of loose sedimentary and volcanic material containing isolated clasts of minerals and melt. Shock metamorphic effects, such as planar fractures (PFs) and planar deformation features (PDFs), were observed in a few quartz grains. The discoveries of silica diaplectic glass hosting coesite, kinked micas and amphibole, lechatelierite, numerous impact melt shards and clasts, and spherules are associated with the impact event. The occurrence of spherules, impact melt clasts, silica diaplectic glass, and lechatelierite, about 1 m below the onset of the transition, marks the beginning of the more coherent impact ejecta layer. The results of siderophile interelement ratios of the transition layer spherules give indications of the relative contribution of the meteoritical component.  相似文献   

10.
Abstract— The Foelsche structure is situated in the McArthur Basin of northern Australia (16°40′ S, 136°47′ E). It comprises a roughly circular outcrop of flat‐lying Neoproterozoic Bukalara Sandstone, overlying and partly rimmed by tangentially striking, discontinuous outcrops of dipping, fractured and brecciated Mesoproterozoic Limmen Sandstone. The outcrop expression coincides with a prominent circular aeromagnetic anomaly, which can be explained in terms of the local disruption and removal or displacement of a regional mafic igneous layer within a circular area at depth. Samples of red, lithic, pebbly sandstone from the stratigraphically lowest exposed levels of the Bukalara Sandstone within the Foelsche structure contain detrital quartz grains displaying mosaicism, planar fractures (PFs) and planar deformation features (PDFs). PFs and PDFs occur in multiple intersecting sets with orientations consistent with a shock metamorphic origin. The abundance and angular nature of the shocked grains indicates a nearby provenance. Surface expression and geophysical data are consistent with a partly buried complex impact crater of ?6 km in diameter with an obscured central uplift ?2 km in diameter. The deformed outcrops of Limmen Sandstone are interpreted as relics of the original crater rim, but the central region of the crater, from which the shocked grains were likely derived, remains buried. From the best available age constraints the Foelsche structure is most likely of Neoproterozoic age.  相似文献   

11.
Abstract— Lake El'gygytgyn, Chukotka, Russia, lies in a ~18 km crater of presumably impact origin. The crater is sited in Cretaceous volcanic rocks of the Okhotsk‐Chukotka volcanic belt. Laser 40Ar/39Ar dating of impact‐melted volcanic rocks from the rim of Lake El'gygytgyn yields a 10‐sample weighted plateau age of 3.58 ± 0.04 Ma. The Ar step‐heating method was critical in this study in identifying inherited Ar in the samples due to incomplete degassing of the Cretaceous volcanic rocks during impact melting. This age is consistent with, but more precise than, previous K‐Ar and fission‐track ages and indicates an “instantaneous” formation of the crater. This tight age control, in conjunction with the presence of impactites, shocked quartz, and other features, is consistent with an impact origin for the structure and seems to discount internal (volcanogenic) origin models.  相似文献   

12.
Abstract— The 1.13-km-diameter Pretoria Saltpan impact crater is located about 40 km NNW of Pretoria, South Africa. The crater is situated in 2.05 Ga old Nebo granite of the Bushveld Complex that is locally intruded by about 1.3 Ga old volcanic rocks. In 1988, a borehole was drilled in the center of the crater. At depths >90 m, breccias were found that contained minerals with characteristic shock-metamorphic features, thus confirming the impact origin of the crater. Fragments of impact glass were recovered from the melt breccias and several hundred sub-millimeter-sized glass fragments were subjected to fission track analysis. The measurements were complicated by the inhomogeneous composition of the impact glasses, but analysis of a large number of tracks yielded an age of 220 ± 52 ka for the Saltpan crater.  相似文献   

13.
El'gygytgyn is a 3.6 Ma, 18 km diameter, impact crater formed in an approximately 88 Ma old volcanic target in Northeast Siberia. The structure has been the subject of a recent ICDP drilling project. In parallel to those efforts, a Russian‐German expedition was undertaken in summer 2011 to investigate the permafrost soil, lake terraces, and the volcanic rocks of the southern and eastern crater rim. This provided the unique opportunity for mapping and sampling of the volcanic target rocks around a large part of this complex impact structure. Samples from 43 outcrops were collected and analyzed petrographically and geochemically. The results were combined with earlier mapping outcomes to create a new geological map of this impact structure and its immediate environs, at the scale of 1:50,000. Compositions of our rock suites are compared with the lithologies of the 2009 ICDP drill core. The ignimbrite described as lower bedrock in the ICDP drill core shows petrographically and chemically strong similarities to the rhyolitic and rhyodacitic ignimbrites observed on surface. The suevite sequence exposed in the ICDP drill core is a mixture of all observed target rocks at their respective proportions in the area. In contrast to previous studies, the calculated average target composition of El'gygytgyn takes the contribution of the basic target rocks into consideration: mafic and intermediate rocks approximately 7.5%, and felsic rocks approximately 92.5%.  相似文献   

14.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   

15.
The Puchezh‐Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh‐Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40Ar/39Ar data from step‐heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh‐Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40Ar/39Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh‐Katunki impact event.  相似文献   

16.
Abstract— The 3.6 Myr old El'gygytgyn impact crater is located in central Chukotka, northeastern Russia. The crater is a well‐preserved impact structure with an inner basin about 15 km in diameter, surrounded by an uplifted rim about 18 km in diameter. The flat floor of the crater is in part occupied by Lake El'gygytgyn, 12 km in diameter, and surrounding terraces. The average profile of the rim is asymmetric, with a steep inner wall and a gentle outer flank. The rim height is about 180 m above the lake level and 140 m above the surrounding area. An outer ring feature, on average 14 m high, occurs at about 1.75 crater radii from the center of the structure. El'gygytgyn crater is surrounded by a complex network of faults. The density of the faults decreases from the bottom of the rim to the rim crest and outside the crater to a distance of about 2.7 crater radii. Lake El'gygytgyn is surrounded by a number of lacustrine terraces. Only minor remnants are preserved of the highest terraces, 80 and 60 m above the present‐day lake level. The widest of the terraces is 40 m above the current lake level and surrounds the lake on the west and northwest sides. The only outlet of the lake is the Enmivaam River, which cuts through the crater rim in the southeast. In terms of structure, El'gygytgyn is well preserved and displays some interesting, but not well understood, features (e.g., an outer ring), similar to those observed at a few other impact structures.  相似文献   

17.
18.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

19.
Abstract— A new locality of in situ massive impact‐melt rock was discovered on the south‐southwestern rim of the Roter Kamm impact structure. While the sub‐samples from this new locality are relatively homogeneous at the hand specimen scale, and despite being from a nearby location, they do not have the same composition of the only previously analyzed impact‐melt rock sample from Roter Kamm. Both Roter Kamm impact‐melt rock samples analyzed to date, as well as several suevite samples, exhibit a granitic‐granodioritic precursor composition. Micro‐chemical analyses of glassy matrix and Al‐rich orthopyroxene microphenocrysts demonstrate rapid cooling and chemical disequilibrium at small scales. Platinum‐group element abundances and ratios indicate an ordinary chondritic composition for the Roter Kamm impactor. Laser argon dating of two sub‐samples did not reproduce the previously obtained age of 3.7 ± 0.3 (1s?) for this impact event, based on 40Ar/39Ar dating of a single vesicular impact‐melt rock. Instead, we obtained ages between 3.9 and 6.3 Ma, with an inverse isochron age of 4.7 ± 0.3 Ma for one analyzed sub‐sample and 5.1 ± 0.4 Ma for the other. Clearly a post‐5 Ma impact at Roter Kamm remains indicated, but further analytical work is required to better constrain the currently best estimate of 4–5 Ma. Both impactor and age constraints are clearly obstructed by the inherent microscopic heterogeneity and disequilibrium melting and cooling processes demonstrated in the present study.  相似文献   

20.
Abstract– The Siljan impact structure in Sweden is the largest confirmed impact structure in Western Europe. Despite this, the structure has been poorly studied in the past, and detailed studies of shock metamorphic features in the target lithologies are missing. Here, we present the results of a detailed systematic search for shock metamorphic features in quartz grains from 73 sampled localities at Siljan. At 21 localities from an area approximately 20 km in diameter located centrally in the structure, the orientations of 2851 planar deformation feature sets in 1179 quartz grains were measured. Observations of shatter cones outside of the zone with shocked quartz extend the total shocked area to approximately 30 km in diameter. The most strongly shocked samples, recording pressures of up to 20 GPa, occur at the very central part of the structure, and locally in these samples, higher pressures causing melting conditions in the affected rocks were reached. Pressures recorded in the studied samples decrease outwards from the center of the structure, forming roughly circular envelopes around the proposed shock center. Based on the distribution pattern of shocked quartz at Siljan, the original transient cavity can be estimated at approximately 32–38 km in diameter. After correcting for erosion, we conclude that the original rim to rim diameter of the Siljan crater was somewhere in the size range 50–90 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号