首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Argon-isotopic abundances were measured in neutron-irradiated samples of Martian meteorites Chassigny, Allan Hills (ALH) 84001, ALH 77005, Elephant Moraine (EET) 79001, Yamato (Y) 793605, Shergotty, Zagami, and Queen Alexandra Range (QUE) 94201, and in unirradiated samples of ALH 77005. Chassigny gives a 39Ar-40Ar age of 1.32 ± 0.07 Ga, which is similar to radiometric ages of the nakhlites. Argon-39-Argon-40 data for ALH 84001 indicate ages between 3.9 and 4.3 Ga. A more precise definition of this age requires detailed characterization of the multiple trapped Ar components in ALH 84001 and of 39Ar recoil distribution. All six shergottite samples show apparent 39Ar-40Ar ages substantially older than the ~165–200 Ma range in ages given by other isotope dating techniques. Shergottites appear to contain ubiquitous Ar components acquired from the Martian atmosphere, the Martian mantle, and commonly terrestrial atmospheric contamination. Zagami feldspar also suggests inherited radiogenic 40Ar. These data analyses indicate that the recent Martian atmospheric component trapped in shergottites has a 40Ar/36Ar ratio possibly as low as ~1750 and no greater than ~1900. These ratios are less than the value of 3000 ± 500 reported by Viking. The 40Ar/36Ar ratio for the Martian mantle component is probably <500 but is poorly constrained. The correlation between trapped 40Ar/36Ar and 129Xe/132Xe ratios in shergottite impact glasses and unirradiated samples of ALH 77005 shows considerable scatter and suggests that the 36Ar/132Xe ratio in the Martian components may vary. Resolution of Martian atmospheric 40Ar/36Ar ratio at different time periods (i.e., at ~4.0 and 0.2 Ga) is also difficult without an understanding of the composition of various trapped components.  相似文献   

2.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

3.
Abstract— Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from Elephant Moraine (EET) 79001, shock vein glass from Shergotty and Yamato (Y) 793605, and whole-rock samples of Allan Hills (ALH) 84001 and Queen Alexandra Range (QUE) 94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET 79001 and a glass vein from Zagami, permit examination in greater detail of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The 40Ar/36Ar ratio of trapped Martian atmospheric Ar is probably considerably lower than the nominal ratio of 3000 measured by Viking, and data on impact glasses suggest a value of ~1900. The atmospheric 36Ar/38Ar ratio is ≤4.0. Martian atmospheric Kr may be enriched in lighter isotopes by ~0.5%/amu compared to both solar-wind Kr and to the Martian composition previously reported. The isotopic composition of Xe in these glasses agrees with that previously reported in the literature. The Martian atmospheric 36Ar/132Xe and 84Kr/132Xe elemental ratios are higher than those reported by Viking by factors of ~2.5–1.6 (depending on the 40Ar/36Ar ratio adopted) and ~1.8, respectively, and are discussed in a separate paper. Cosmogenic gases indicate space exposure ages of 2.7 ± 0.6 Ma for QUE 94201 and Shergotty and 14 ± 1 Ma for ALH 84001. Small amounts of 21Ne produced by energetic solar protons may be present in QUE 94201 but are not present in ALH 84001 or Y-793605. The space exposure age for Y-793605 is 4.9 ± 0.6 Ma and appears to be distinctly older than the ages for basaltic shergottites. However, uncertainties in cosmogenic production rates still makes somewhat uncertain the number of Martian impact events required to produce the exposure ages of Martian meteorites.  相似文献   

4.
Abstract— The magnetic properties of samples of seven Martian meteorites (EET 79001, Zagami, Nakhla, Lafayette, Governador Valadares, Chassigny and ALH 84001) have been investigated. All possess a weak, very stable primary natural remanent magnetization (NRM), and some have less stable secondary components. In some cases, the latter are associated with magnetic contamination of the samples, imparted since their recovery, and with viscous magnetization, acquired during exposure of the meteorites to the geomagnetic field since they fell. The magnetic properties are carried by a small content (<1%) of titanomagnetite and, in ALH 84001, possibly by magnetite as well. The most likely source of the primary NRM is a thermoremanent magnetization acquired when the meteorite material last cooled from a high temperature in the presence of a magnetic field. Current evidence is that this was 1.3 Ga ago for the nakhlites and Chassigny and 180 Ma for shergottites: the time of the last relevant cooling of ALH 84001 is not presently known. Preliminary estimates of the strength of the magnetizing field are in the range 0.5–5 üT, which is at least an order of magnitude greater than the present field. It is tentatively concluded that the magnetic field was generated by a dynamo process in a Martian core with appropriate structure and properties.  相似文献   

5.
Abstract— We report the elemental and isotopic composition of the noble gases as well as the chemical abundances in pyroxene, maskelynite/mesostasis glass, and bulk material of Shergotty and of bulk samples from Chassigny and Yamato 793605. The 40K-40Ar isochron for the Shergotty minerals yields a gas retention age of 196 Ma, which is, within errors, in agreement with previously determined Rb-Sr internal isochron ages. Argon that was trapped at this time has a 40Ar/36Ar ratio of 1100. For Chassigny and Y-793605, we obtain trapped 40Ar/36Ar ratios of 1380 and 950, respectively. Using these results and literature data, we show that the three shergottites, Shergotty, Zagami, and QUE 94001; the lherzolites ALH 77005, LEW 88516, and Y-793605; as well as Chassigny and ALH 84001 contain a mixture of Martian mantle and atmospheric Ar; whereas, the trapped 40Ar/36Ar ratio of the nakhlites, Nakhla, Lafayette, and Governador Valadares cannot be determined with the present data. We show that Martian atmospheric trapped Ar in Martian meteorites is correlated with the shock pressure that they experienced. Hence, we conclude that the Martian atmospheric gases were introduced by shock into the meteoritic material. For the Shergotty minerals, we obtain 3He-, 21Ne-, and 38Ar-based cosmic-ray exposure ages of 3.0 Ma, and for the lherzolite Y-793605, 4.0 Ma, which confirms our earlier conclusion that the lherzolites were ejected from Mars ~1 Ma before the shergottites. Chassigny yields the previously known ejection age of 11.6 Ma.  相似文献   

6.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

7.
Abstract— Isotopic signatures and concentrations of xenon have been measured in Shergotty mineral separates by laser step heating. Martian atmosphere and ‘martian interior’ xenon are present, as is a spallation component. Martian atmospheric xenon is 5–10 times more concentrated in opaque minerals (magnetite, ilmenite, and pyrrhotite) and maskelynite than in pyroxenes, perhaps reflecting grain size variation. This is shown to be consistent with shock incorporation. A component consisting of solar xenon with a fission contribution, similar to components previously identified in martian meteorites and associated with the martian interior, is best defined in the pyroxene‐dominated separates. This component exhibits a consistent 129Xe (129Xe/132Xe ?1.2) excess over solar/planetary (129Xe/132Xe ?1.04). We suggest that gas present in the melt, perhaps a mixture of interior xenon and martian atmosphere, was incorporated into the pyroxenes in Shergotty as the minerals crystallized.  相似文献   

8.
Abstract– Xenon‐isotopic ratios, step‐heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock’s parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.  相似文献   

9.
Abstract— The abundances and isotopic compositions of N and Ar have been measured by stepped combustion of the Allan Hills 84001 (ALH 84001) Martian orthopyroxenite. Material described as shocked is N-poor ([N] ~ 0.34 ppm; δ15N ~ +23%); although during stepped combustion, 15N-enriched N (δ15N ~ +143%) is released in a narrow temperature interval between 700 °C and 800 °C (along with 13C-enriched C (δ13C ~ +19%) and 40Ar). Cosmogenic species are found to be negligible at this temperature; thus, the iso-topically heavy component is identified, in part, as Martian atmospheric gas trapped relatively recently in the history of ALH 84001. The N and Ar data show that ALH 84001 contains species from the Martian lithosphere, a component interpreted as ancient trapped atmosphere (in addition to the modern atmospheric species), and excess 40Ar from K decay. Deconvolution of radiogenic 40Ar from other Ar components, on the basis of end-member 36Ar/14N and 40Ar/36Ar ratios, has enabled calculation of a K-Ar age for ALH 84001 as 3.5–4.6 Ga, depending on assumed K abundance. If the component believed to be Martian palaeoatmos-phere was introduced to ALH 84001 at the time the K-Ar age was set, then the composition of the atmosphere at this time is constrained to: δ15N ≥ +200%, 40Ar/36Ar ≤ 300 and 36Ar/14N ≥ 17 × 10?5. In terms of the petrogenetic history of the meteorite, ALH 84001 crystallised soon after differentiation of the planet, may have been shocked and thermally metamorphosed in an early period of bombardment, and then subjected to a second event. This later process did not reset the K-Ar system but perhaps was responsible for introducing (recent) atmospheric gases into ALH 84001; and it might mark the time at which ALH 84001 suffered fluid alteration resulting in the formation of the plagioclase and carbonate mineral assemblages.  相似文献   

10.
Abstract— Cosmic-ray produced nuclear tracks and noble gases have been studied in the martian orthopyroxenite Allan Hills 84001 to delineate its cosmic-ray exposure history, preatmospheric size, and fall characteristics. A K-Ar age of 3.9 Ga, cosmic-ray exposure duration of 16.7 Ma, and a preatmospheric radius of 10 cm have been deduced from the noble gas and track data. The track data suggest ALH 84001 to be a single fall that has suffered atmospheric mass ablation in excess of 85%, higher than the value deduced for the shergottites, ALHA 77005, EETA 79001, and Shergotty. The formation age, as well as the cosmic-ray exposure duration, determined in this work are in good agreement with values reported earlier and are distinctly different from other shergottite, nakhlite, and chassignite (SNC) meteorites analysed so far. The high cosmogenic 22Ne/21Ne ratio of 1.22 most probably reflects an effect due to non-chondritic composition of ALH 84001 as the track data suggest high shielding (<5cm) for the analysed samples. There are signatures in the noble gas data that indicate the possible presence of trapped Ar and Ne of martian atmospheric origin in ALH 84001.  相似文献   

11.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

12.
Abstract— Isotopic and trace element compositions of Martian meteorites show that early differentiation of Mars produced complementary crustal and mantle reservoirs that were sampled by later magmatic events. This paper describes a mass balance model that estimates the rare earth element (REE) content and thickness of the crust of Mars from the compositions of shergottites. The diverse REE and Nd isotopic compositions of shergottites are most easily explained by variable addition of light rare earth element (LREE)–enriched crust to basaltic magmas derived from LREE-depleted mantle source regions. Antarctic shergottites EET 79001, ALH 77005, LEW 88516, and QUE 94201 all have strongly LREE-depleted patterns and positive initial 143Nd isotopic compositions, which is consistent with the generation of these magmas from depleted mantle sources and little or no interaction with enriched crust. In contrast, Shergotty and Zagami have negative initial 143Nd isotopic compositions and less pronounced depletions of the LREE, which have been explained by incorporation of enriched crustal components into mantle-derived magmas (Jones, 1989; Longhi, 1991; Borg et al., 1997). The mass balance model presented here derives the REE composition of the crustal component in Shergotty by assuming it represents a mixture between a mantle-derived magma similar in composition to EET 79001A and a LREE-enriched crustal component. The amount of crust in Shergotty is constrained by mixing relations based on Nd-isotopic compositions, which allows the REE pattern of the crustal component to be calculated by mass balance. The effectiveness of this model is demonstrated by the successful recovery of important characteristics of the Earth's continental crust from terrestrial Columbia River basalts. Self-consistent results for Nd-isotopic compositions and REE abundances are obtained if Shergotty contains ~10–30% of LREE-enriched crust with >10 ppm Nd. This crustal component would have moderately enriched LREE (Sm/Nd = 0.25–0.27; 147Sm/144Nd = 0.15–0.17; La/Yb = 2.7–3.8), relatively unfractionated heavy rare earth elements (HREE), and no Eu anomaly. Crust with these characteristics can be produced from a primitive lherzolitic Martian mantle by modest amounts (2–8%) of partial melting, and it would have a globally averaged thickness of <45 km, which is consistent with geophysical estimates. Mars may serve as a laboratory to investigate planetary differentiation by extraction of a primary basaltic crust.  相似文献   

13.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

14.
Abstract— We have done petrologic studies of brachinites Allan Hills (ALH) 84025, Elephant Moraine (EET) 99402, and EET 99407; bulk geochemical studies of EET 99402 and EET 99407; Ar‐Ar studies of Brachina and EET 99402; and a Xe isotopic study of Brachina. Textural, mineral compositional, and bulk compositional evidence show that EET 99402 and EET 99407 are paired. ALH 84025, EET 99402, and EET 99407 have igneous textures. Petrofabric analyses of ALH 84025 and EET 99407 demonstrate the presence of lineations and probable foliations of olivine grains that support formation as igneous cumulates. Mineral minor element chemistry and bulk rock incompatible lithophile element contents of the brachinites are distinct from those of acapulcoitelodranite clan meteorites, a suite of high‐grade metamorphic rocks and anatectic residues. The differences demonstrate a higher blocking temperature of equilibration for the brachinites and that cumulus plagioclase is present in EET 99402, EET 99407, and probably ALH 84025, thus indicating an igneous origin. Brachinites are differentiated, ultramafic achondrites, and are not part of a suite of primitive achondrites. We infer that their parent asteroid is a differentiated body. Brachina has an excess of 129Xe correlated with reactor‐produced 128Xe, demonstrating that short‐lived 129I was present at the time of formation. This, plus literature data, attests to early formation of the brachinites, within a few Ma of the formation of chondrites. Ar‐Ar age data show that Brachina and EET 99407 were degassed about 4.13 Ga ago, possibly by a common impact event. EET 99402 and EET 99407 show petrographic evidence for shock, including possible conversion of plagioclase to maskelynite followed by devitrification. Brachina is unshocked, making a direct association between the Ar‐Ar age and textures ambiguous.  相似文献   

15.
We report new data from Pesyanoe‐90,1 (dark lithology) on the isotopic signature of solar wind (SW) Xe as recorded in this enstatite achondrite which represents a soil‐breccia of an asteroidal regolith. The low temperature (≤800°C) steps define the Pesyanoe‐S xenon component, which is isotopically consistent with SW Xe reported for the lunar regolith. This implies that the SW Xe isotopic signature was the same at two distinct solar system locations and, importantly, also at different times of solar irradiation. Further, we compare the calculated average solar wind “SW‐Xe” signature to Chass‐S Xe, the indigenous Xe observed in SNC (Mars) meteorites. Again, a close agreement between these compositions is observed, which implies that a mass‐dependent differential fractionation of Xe between SW‐Xe and Chass‐S Xe is >1.5%o per amu. We also observe fractionated (Pesyanoe‐F) Xe and Ar components in higher temperature steps and we document a fission component due to extinct 244Pu. Interestingly, the Pesyanoe‐F Xe component is revealed only at the highest temperatures (>1200°C). The Pesyanoe‐F gas reveals Xe isotopic signatures that are consistent with lunar solar energetic particles (SEP) data and may indicate a distinct solar energetic particle radiation as was inferred for the moon. However, we cannot rule out fractionation processes due to parent body processes. We note that ratios 36Ar/38Ar≤5 are also consistent with SEP data. Calculated abundances of the fission component correlate well with radiogenic 40Ar concentrations, revealing rather constant 244Pu/K ratios in Pesyanoe, and separates thereof, and indicate that both components were retained. We identify a nitrogen component (δ15N = 44%o) of non‐solar origin with an isotopic signature distinct from indigenous N (δ15N = ?33%o). While large excesses at 128Xe and 129Xe are observed in the lunar regolith samples, these excesses in Pesyanoe are small. On the other hand, significant 126Xe isotopic excesses, comparable to relative excesses observed in lunar soils and breccias, are prominent in the intermediate temperature steps of Pesyanoe‐90,1.  相似文献   

16.
Abstract— Considerable evidence points to a martian origin of the SNC meteorites. Noble gas isotopic compositions have been measured in most SNC meteorites. The 129Xe/132Xe vs. 84Kr/132Xe ratios in Chassigny, most shergottites, and lithology C of EETA 79001 define a linear array. This array is thought to be a mixing line between martian mantle and martian atmosphere. One of the SNC meteorites, Nakhla, contains a leachable component that has an elevated 129Xe/132Xe ratio relative to its 84Kr/132Xe ratio when compared to this approximately linear array. The leachable component probably consists in part of iddingsite, an alteration product produced by interaction of olivine with aqueous fluid at temperatures lower than 150 °C. The elevated Xe isotopic ratio may represent a distinct reservoir in the martian crust or mantle. More plausibly, it is elementally fractionated martian atmosphere. Formation of sediments fractionates the noble gases in the correct direction. The range of sediment/atmosphere fractionation factors is consistent with the elevated 129Xe/132Xe component in Nakhla being contained in iddingsite, a low temperature weathering product. The crystallization age of Nakhla is 1.3 Ga. Its low-shock state suggests that it was ejected from near the surface of Mars. As liquid water is required for the formation of iddingsite, these observations provide further evidence for the near surface existence of aqueous fluids on Mars more recently than 1.3 Ga.  相似文献   

17.
Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low‐temperature (20 °C) one‐dimensional (1‐D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low‐temperature (~20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica‐rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water–rock interaction that must have led to the formation of the carbonates ~ 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.  相似文献   

18.
Abstract— Rare earth element (REE) and other selected trace and minor element concentrations were measured in individual grains of orthopyroxene, feldspathic glass (of plagioclase composition) and merrillite of the ALH 84001 Martian meteorite. Unlike in other Martian meteorites, phosphate is not the main REE carrier in ALH 84001. The REE pattern of ALH 84001 bulk rock is dependent on the modal abundances of three REE-bearing phases, namely, orthopyroxene, which contains most of the heavy rare earth elements (HREEs); feldspathic glass, which dominates the Eu abundances; and merrillite, which contains the majority of the light rare earth elements (LREEs). Variations in the REE abundances previously observed in different splits of ALH 84001 can easily be explained in terms of small variations in the modal abundances of these three minerals without the need to invoke extensive redistribution of LREEs. At least some orthopyroxenes (i.e., those away from contacts with feldspathic glass) in ALH 84001 appear to have preserved their original REE zonation from igneous fractionation. An estimate of the ALH 84001 parent magma composition from that of the unaltered orthopyroxene “core” (i.e., zoned orthopyroxene with the lowest REE abundances) indicates that it is LREE depleted. This implies that the Martian mantle was already partly depleted within ~100 Ma of solar system formation, which is consistent with rapid accretion and differentiation of Mars. Although equilibration and exchange of REEs between phases (in particular, transport of LREEs into the interstitial phases, feldspathic glass and merrillite) cannot be ruled out, our data suggest that the LREE enrichment in melts “in equilibrium” with these interstitial phases is most likely the result of late-stage infiltration of the cumulate pile by a LREE-enriched melt.  相似文献   

19.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

20.
The isotopic composition of the noble gases of the new Martian meteorite, the Dhofar 019 shergottite, found in the desert in the territory of the Sultanate of Oman on January 24, 2001, was investigated. Stepwise thermal annealing with isotopic analysis of each of the noble-gas temperature fractions was employed to determine the component composition. The concentration of the trapped noble gases in the new Martian meteorite Dhofar 019 is relatively high, although it lies within the range of concentrations in known SNC meteorites. A characteristic feature of all the trapped noble gases is the presence of two main components: a low-temperature, probably terrestrial atmospheric, component, trapped during the weathering of the meteorite on Earth, and a high-temperature trapped Martian component. Owing to the different ratios of the quantities of the two components, the trapped neon, argon, krypton, and xenon differ markedly in the kinetics of their release. The isotopic composition of the noble gases varies accordingly. The trapped xenon was found to contain two Martian components. One of them, with typical ratios of 129Xe/132Xe and 132Xe/84Kr, is representative of xenon and krypton of the Martian atmosphere; the other, of gases of the Martian mantle. Variations of the isotopic compositions of helium, neon, and argon (and also, to a lesser extent, of krypton and xenon) during the thermal annealing of the Dhofar 019 meteorite clearly point to a large proportion of cosmogenic as well as trapped components. The concentration of cosmogenic neon and argon in the meteorite is unusually high. This corresponds to a maximum exposure age among other SNC meteorites: 20 million years. Estimates of the potassium–argon age (gas-retention age) yielded the figure of 560 million years, which is within the range of values obtained for SNC meteorites by other authors, who used the rubidium–strontium and the potassium–argon technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号