首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X‐ray fluorescence (XRF) and gamma‐ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three‐dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.  相似文献   

2.
Abstract— Piplia Kalan is an equilibrated eucrite consisting of 60–80 vol% lithic clasts in a subordinate brecciated matrix. Ophitic/subophitic clasts fall into two groups: finer‐grained lithology A and coarser‐grained lithology B. Very fine‐grained clasts with equigranular textures (lithology C) also occur and originally were hypocrystalline in texture. The variety of materials represented in Piplia Kalan suggests cooling histories ranging from quenching to slower crystallization. Despite textural differences, clasts and matrix have similar mineral and bulk compositions. Thus, Piplia Kalan is probably best classified as a genomict breccia that could represent fragments of a single lava flow or shallow intrusive body, including fine‐grained or glassy outer margin and more slowly cooled coarser‐grained interior. Bulk composition suggests that the meteorite is most closely related to the main group eucrites, but it probably was affected by minor amounts of fractional crystallization. Piplia Kalan displays evidence of an early shock event, including brecciated matrix and areas of lithic clasts that contain very fine‐grained, granular pyroxene between deformed feldspar laths. The meteorite also displays evidence of at least one episode of extensive thermal metamorphism: hypocrystalline materials are recrystallized to hornfelsic textures and minerals throughout the meteorite contain abundant inclusions that are relatively large in size. Veins of brown glass transect both clasts and matrix and indicate a second, postmetamorphism shock event.  相似文献   

3.
Abstract— We have investigated 10 new specimens of the Millbillillie eucrite to study its textures and mineral compositions by electron probe microanalyser and scanning electron microscope. Although originally described as having fine-grained texture, the new specimens show diversity of texture. The compositions (Mg/Fe ratios) of the host pigeonites and augite lamellae are homogeneous, respectively, in spite of the textural variation. In addition to their chemical homogeneity, pyroxenes in coarse and fine-grained clasts are partly inverted to orthopyroxene. Chemical zoning of plagioclase during crystal growth is preserved. This eucrite includes areas of granulitic breccias and impact melts. Large scale textures show a subparallel layering suggesting incomplete mixing and deposition of impact melt and lithic fragments. An 39Ar-40Ar age determination for a coarse-grained clast indicates a strong degassing event at 3.55 ± 0.02 Ga. We conclude that Millbillillie is among the most equilibrated eucrites produced by thermal annealing after impact brecciation. According to the classification of impact breccias, Millbillillie can be classified as a mixture of granulitic breccias and impact melts. The last significant thermal event is characterized by network-like glassy veins that run through clasts and matrices. Consideration of textural observations and requirements for Ar-degassing suggests that the 39Ar-40Ar age could in principle date either the earilier brecciation and annealing event or the event which produced the veins.  相似文献   

4.
Abstract— The C contents and isotopic compositions of four eucrites, four diogenites and two howardites have been determined. Stepped heating in an O atmosphere was employed to convert selectively different carbonaceous materials to CO2 gas at various temperatures. This technique successfully distinguishes between terrestrial contaminants and indigenous C. With the exception of the Kapoeta howardite, the howardite, eucrite, and diogenite (HED) meteorites contain ~10–30 ppm indigenous C with δ13C between ?29% and ?19%. Kapoeta (a regolith breccia) has an elevated C content and δ13C, due to the presence of 13C-enriched carbonate minerals (δ13C ~ +20%) in CM2- or CR2-like clasts. The range in δ13C displayed by HED samples is similar to that of other solar system basalts, such as lunar rocks and Martian meteorites but distinctly different from that of the terrestrial mantle. The diogenites have a slightly lower total C yield and higher δ13C than the eucrites, which is a result of degassing of trapped CO/CC2/CO2–3 from the silicate lattice during metamorphism or annealing. However, three out of the four diogenites studied appear to contain a discrete component, possibly of graphitic C coating silicate grains, that is seemingly unaffected by the extended annealing period experienced by the diogenites. It is possible that this component might host the indigenous primitive Xe recently identified in diogenites.  相似文献   

5.
Abstract– Analysis of the mineralogy, isotopic, and bulk compositions of the eucrite meteorites is imperative for understanding their origin on the asteroid 4 Vesta, the proposed parent body of the HED meteorites. We present here the petrology, mineral compositions, and bulk chemistry of several lithic components of the new brecciated basaltic eucrite Northwest Africa (NWA) 3368 to determine if all the lithologies reflect formation from one rock type or many rock types. The meteorite has three main lithologies: coarse‐ and fine‐grained clasts surrounded by a fine‐grained recrystallized silicate matrix. Silicate compositions are homogeneous, and the average rare earth element pattern for NWA 3368 is approximately 10× CI chondrites with a slight negative Eu anomaly. Major and trace element data place NWA 3368 with the Main Group‐Nuevo Laredo trend. High‐Ti chromites with ilmenite exsolution lamellae provide evidence of NWA 3368’s history of intense metamorphism. We suggest that this meteorite underwent several episodes of brecciation and metamorphism, similar to that proposed by Metzler et al. (1995) . We conclude that NWA 3368 is a monomict basaltic eucrite breccia related to known eucrites in texture and in mineral, bulk, and oxygen isotopic composition.  相似文献   

6.
Abstract— Cosmogenic radionuclides, particle tracks and rare gases have been measured in two fragments of the Piplia Kalan eucrite that fell in Rajasthan, India on 1996 June 20. The cosmic-ray exposure age of the meteorite is calculated to be 23 Ma, which is similar to ages of some other eucrites. The track density in feldspars and pyroxenes varies between 0.2 × 106 to ~4.5 × 106 cm?2. The mass ablation of the meteorite, based on the distribution of track density in near-surface samples of the two fragments, is calculated to be ~75%, which corresponds to an entry velocity of ~17 km/s. The orbital parameters of the eucrite have been computed from the radiant of the meteor trail and the geocentric velocity. The best estimates are a = 2.47 AU, e = 0.62 and i = 7.54°, which is similar to the orbital elements of other meteorites, most of which have been inferred to originate within 2.6 AU of the Sun. The activity of the radionuclide 26Al agrees with the expected production rate; whereas the shortlived radionuclides 22Na, 54Mn, 46Sc etc. have levels that are consistent with the galactic cosmic-ray fluxes that are expected during the solar minimum period before the time of fall. All the cosmogenic effects (i.e., radio- and stable- nuclides and particle tracks) are consistent with the meteoroid having had a simple, one-stage exposure history in interplanetary space. Lower radio genic ages of U, Th-He (0.7 Ga) and K-Ar (3.6 Ga) indicate severe losses of 4He and 40Ar, as observed in most eucrites. A Pu-Xe age, concordant with Angra dos Reis, shows that Piplia belongs to the “old” eucrite group.  相似文献   

7.
The Emmaville eucrite is a relatively poorly studied basaltic achondrite with an anomalous oxygen isotope signature. In this study, we report comprehensive mineralogical, petrographic, and geochemical data from Emmaville in order to understand its petrogenesis and relationship with the basaltic eucrites. Emmaville is an unusually fine‐grained, hornfelsic‐textured metabasalt with pervasive impact melt veins and mineral compositions similar to those of typical basaltic eucrites. The major and trace element bulk composition of Emmaville is also typical of a basaltic eucrite. Three separated individual lithologies were also analyzed for O isotopes; a dark gray fraction (E1), a shocked lithology (E2), and a lighter gray portion (E3). Fractions E1 and E2 shared similar O isotope compositions to the bulk sample (E‐B), whereas the lighter gray portion (E3) is slightly elevated in Δ17O and significantly elevated in δ18O compared to bulk. No evidence for any exogenous material is observed in the thin sections, coupled with the striking compositional similarity to typical basaltic eucrites, appears to preclude a simple impact‐mixing hypothesis. The O‐isotopes of Emmaville are similar to those of Bunburra Rockhole, A‐881394, and EET 92023, and thus distinct from the majority of the HEDs, despite having similarities in petrology, mineral, and bulk compositions. It would, therefore, seem plausible that all four of these samples are derived from a single HED‐like parent body that is isotopically distinct from that of the HEDs (Vesta) but similar in composition.  相似文献   

8.
9.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   

10.
Abstract— We studied the petrography, mineralogy, bulk chemical, I-Xe, and O-isotopic compositions of three dark inclusions (E39, E53, and E80) in the reduced CV3 chondrite Efremovka. They consist of chondrules, calcium-aluminum-rich inclusions (CAIs), and fine-grained matrix. Primary minerals in chondrules and CAIs are pseudomorphed to various degrees by a mixture largely composed of abundant (>95%), fine-grained (>0.2 μm) fayalitic olivine (Fa35–42) and minor amounts of chlorite, poorly-crystalline Si-Al-rich material, and chromite; chondrule and CAI shapes and textures are well-preserved. Secondary Ca-rich minerals (Ti-andradite, kirschsteinite, Fe-diopside) are common in chondrule pseudomorphs and matrices in E39 and E80. The degree of replacement increases from E53 to E39 to E80. Fayalitic olivines are heavily strained and contain abundant voids similar to those in incompletely dehydrated phyllosilicates in metamorphosed CM and CI chondrites. Opaque nodules in chondrules consist of Ni- and Co-rich taenite, Co-rich kamacite, and wairauite; sulfides are rare; magnetite is absent. Bulk O-isotopic compositions of E39 and E53 plot in the field of aqueously altered CM chondrites, close to the terrestrial fractionation line; the more heavily altered E39 is isotopically heavier than the less altered E53. The apparent I-Xe age of E53 is 5.4 Ma earlier than Bjurböle and 5.7 ± 2.0 Ma earlier than E39. The I-Xe data are consistent with the most heavily altered dark inclusion, E39 having experienced either longer or later alteration than E53. Bulk lithophile elements in E39 and E53 most closely match those of CO chondrites, except that Ca is depleted and K and As are enriched. Both inclusions are depleted in Se by factors of 3–5 compared to mean CO, CV, CR, or CK chondrites. Zinc in E39 is lower than the mean of any carbonaceous chondrite groups, but in E53 Zn is similar to the means in CO, CV, and CK chondrites. The Efremovka dark inclusions experienced various degrees of aqueous alteration, followed by low degree thermal metamorphism in an asteroidal environment. These processes resulted in preferential oxidation of Fe from opaque nodules and formation of Ni- and Co-rich metal, metasomatic alteration of primary minerals in chondrules and CAIs, and the formation of fayalitic olivine and secondary Ca-Fe-rich minerals. Based on the observed similarities of the alteration mineralization in the Efremovka and Allende dark inclusions, we infer that the latter may have experienced similar alteration processes.  相似文献   

11.
Northwest Africa (NWA) 869 is the largest sample of chondritic regolith breccia, making it an ideal source for research on accretionary processes and primordial chemical mixing. One such process can be seen in detail through the first identification of a eucrite impactor clast in an L chondrite breccia. The ~7 mm diameter clast has oxygen isotope compositions (Δ17O = ?0.240, ?0.258‰) and pigeonite and augite compositions typical for eucrites, but with high areal abundance of silica (9.5%) and ilmenite (1.5%). The rim around the clast is a mixture of breccia and igneous phases, the latter due to either impactor‐triggered melting or later metamorphism. The rim has an oxygen isotope composition falling on a mixing line between known eucrite and L chondrite compositions (Δ17O = 0.326‰) and, coincidentally, on the Mars fractionation line. Pyroxene grains from the melt component in the rim have compositions that fall on a mixing line between the average eucrite pyroxene composition and equilibrated L chondrite composition. The margins of chondritic olivine crystal clasts in the rim are enriched in Fe as a result of diffusion from the Fe‐rich melt and suggest cooling on the scale of hours. The textures and chemical mixing observed provide evidence for an unconsolidated L chondrite target material, differing from the current state of NWA 869 material. The heterogeneity of oxygen isotope and chemical signatures at this small length scale serve as a cautionary note when extrapolating from small volumes of materials to deduce planetesimal source characteristics.  相似文献   

12.
Abstract— We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identical and are composed of dispersed aggregates, chondrules and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine (Fo100–45), orthopyroxene (Wo1–2En98–60), plus some diopside. The matrix consists of fine-grained olivine (Fo60–53), and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major element composition of the matrix is identical in both clasts and similar to that of CM, CO and CV chondrites. The bulk composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite. The unusual rare earth element abundance pattern may, in part, be due to terrestrial alteration.  相似文献   

13.
Abstract— Dar al Gani 872 (DaG 872) is a new meteorite from Libya that we classified by means of Instrumental Neutron Activation Analysis (INAA), electron microprobe, and optical microscopy. According to our results, DaG 872 is a Mg‐rich main group eucrite, i.e., a monomict noncumulate basaltic eucrite displaying a predominant coarse‐grained relict subophitic and a fine‐grained granulitic texture. The meteorite also shows pockets of late‐stage mesostasis and is penetrated by several calcite veins due to terrestrial weathering. Finally, it exhibits shock phenomena of stage 1–2 including heavily fractured mineral components, undulose extinction of plagioclase, kinked lamellae, and mosaicism in pyroxenes corresponding to peak pressures of ?20 GPa. In view of petrographic criteria as well as compositional and exsolution characteristics of its pyroxenes, the sample represents a metamorphic type 5 eucrite. Assuming the metamorphic type to be a function of burial depth on the parent body and taking into account the relatively high shock stage, the excavation of DaG 872 was likely induced by a major impact event. Prior to this point, DaG 872 apparently underwent a 4‐stage geological evolution that is reflected by intricate textural and mineralogical features.  相似文献   

14.
The Allan Hills 76005 polymict eucrite pairing group consists of 15 paired masses recovered during six different field seasons in the Transantarctic Mountains. Although this group has been well studied in general, most of the meteorites contain a significant portion of dark clasts that have not been well characterized. The Dawn mission to Vesta discovered dark materials that provide insight into its evolution. The ALH dark clasts are thus of great interest to understanding the evolution of Vesta. Here, 45 different dark clasts from 15 different thin sections from the pairing group are characterized in detail to better understand their nature and origin. Five different textural types of dark clasts are recognized among this group—skeletal, vitrophyric, pilotaxitic, fan spherulitic, and troilite‐silica‐plagioclase‐rich clasts with aphyric or blobby textures. Mineralogy of the clasts is dominated by plagioclase and pyroxene, with minor troilite, silica, ilmenite, chromite, and rare Fe‐Ni metal. All of the textures can be produced by rapid cooling rates on the order of 60–2500°C h?1. Bulk compositions of the clasts are demonstrably eucritic, and not chondritic, howarditic, or diogenitic. The combination of mineralogy, composition, and textures strongly suggests that the dark clasts are eucritic impact melts. Several craters on Vesta have associated orange deposits that have been proposed as impact melt breccias. The ALH pairing group may thus represent material that originated near Oppia or Octavia craters.  相似文献   

15.
Abstract— We have measured a surprisingly long terrestrial age of 410,000 ±45,0020,000 yr (410 ±2045ka) for basaltic eucrite Río Cuarto 001 using accelerator mass spectrometry of 26Al, 36Cl, and 41Ca. Though many meteorites are known to have survived for tens or hundreds of ka in Antarctica or hot deserts, the mean annual precipitation of 815 mm in Río Cuarto, Cordoba Province, Argentina, makes the long survival of this meteorite remarkable. We propose two explanations for the exceptional preservation of Río Cuarto 001. First, the meteorite contains only trace amounts of metal, so the weathering and oxidation of metallic Fe, which commonly destroys chondrites, is ineffective in this case. Second, the meteorite was found in a relatively young deflation basin, and may have been exhumed only recently from beneath a protective layer of soil. Insofar as the survival on Earth of Río Cuarto 001 is due to environmental factors, there may be other meteorites with comparably long terrestrial ages still to be discovered in the vicinity.  相似文献   

16.
Melt inclusions in igneous minerals can provide constraints on magma compositions, especially for planetary samples where mass is severely limited. Small inclusions (<15 μm diameter) are more abundant than large ones, but have been used little from concern that they did not entrap average magma, but are rich in melt of a diffusional layer against the host mineral. We compared bulk compositions and calculated original compositions of small and large melt inclusions in the Martian basalt meteorite (shergottite) Tissint. Small and large melt inclusions are consistent with the same line of igneous differentiation, have the same abundance ratios for incompatible elements (P, Ti, Al, K, Na), and are consistent with derivation from the bulk composition of Tissint (inferred to represent its parent melt composition). For Tissint, then, small melt inclusions show no evidence of entrapping diffusional boundary layers, and appear to have entrapped bulk magma. Thus, its small inclusions can be as useful as larger ones; this may be so for other planetary samples, and thus provides an additional tool for investigating planetary magmas.  相似文献   

17.
Abstract— We studied the texture, mineralogy, and bulk chemical composition of Dhofar 007, a basaltic achondrite. Dhofar 007 is a polymict breccia that is mostly composed of coarse‐grained granular (CG) clasts with a minor amount of xenolithic components, such as a fragment of Mg‐rich pyroxene. The coarse‐grained, relict gabbroic texture, mineral chemistry, and bulk chemical data of the coarse‐grained clast indicate that the CG clasts were originally a cumulate rock crystallized in a crust of the parent body. However, in contrast to monomict eucrites, the siderophile elements are highly enriched and could have been introduced by impact events. Dhofar 007 appears to have experienced a two‐stage postcrystallization thermal history: rapid cooling at high temperatures and slow cooling at lower temperatures. The presence of pigeonite with closely spaced, fine augite lamellae suggests that this rock was cooled rapidly from higher temperatures (>0.5 °C/yr at ˜1000 °C) than typical cumulate eucrites. However, the presence of the cloudy zone in taenite and the Ni profile across the kamacite‐taenite boundaries indicates that the cooling rate was very slow at lower temperatures (˜1–10 °C/Myr at <600–700 °C). The slow cooling rate is comparable to those in mesosiderites and pallasites. The two‐stage thermal history and the relative abundance of siderophile elements similar to those for metallic portions in mesosiderites suggest that Dhofar 007 is a large inclusion of mesosiderite. However, we cannot rule out a possibility that Dhofar 007 is an anomalous eucrite.  相似文献   

18.
We performed a petrologic, geochemical, and oxygen isotopic study of the lowest FeO ordinary chondrite (OC), Yamato (Y) 982717. Y 982717 shows a chondritic texture composed of chondrules and chondrule fragments, and mineral fragments set in a finer grained, clastic matrix, similar to H4 chondrites. The composition of olivine (Fa11.17 ± 0.48 (1σ)) and low‐Ca pyroxene (Fs11.07 ± 0.98 (1σ)Wo0.90 ± 0.71(1σ)) is significantly more magnesian than those of typical H chondrites (Fa16.0‐20, Fs14.5‐18.0), as well as other known low‐FeO OCs (Fa12.8‐16.7; Fs13‐16). However, the bulk chemical composition of Y 982717, in particular lithophile and moderately volatile elements, is within the range of OCs. The bulk siderophile element composition (Ni, Co) is within the range of H chondrites and distinguishable from L chondrites. The O‐isotopic composition is also within the range of H chondrites. The lack of reduction textures indicates that the low olivine Fa content and low‐Ca pyroxene Fs content are characteristics of the precursor materials, rather than the result of reduction during thermal metamorphism. We suggest that the H chondrites are more compositionally diverse than has been previously recognized.  相似文献   

19.
Abstract— We have determined initial 129I/127I ratios for mineral concentrates of four enstatite meteorites and a eucrite. In the case of the enstatite meteorites the inferred ages are associated with the pyroxene‐rich separates giving pyroxene closure ages relative to the Shallowater standard of Indarch (EH4, 0.04 ± 0.67 Ma), Khairpur (EL6, ?4.22 ± 0.67 Ma), Khor Temiki (aubrite, ?0.06 Ma), and Itqiy (enstatite achondrite, ?2.6 ± 2.6 Ma), negative ages indicate closure after Shallowater. No separate from the cumulate eucrite Asuka (A?) 881394 yielded a consistent ratio, though excess 129Xe was observed in a feldspar separate, suggesting disturbance by thermal metamorphism within 25 Ma of closure in Shallowater. Iodine‐129 ages are mapped to the absolute Pb‐Pb time scale using the calibration proposed by Gilmour et al. (2006) who place the closure age of Shallowater at 4563.3 ± 0.4 Ma. Comparison of the combined 129I‐Pb data with associated 53Mn ages, for objects that have been dated by both systems, indicates that all three chronometers evolved concordantly in the early solar system. The enstatite chondrites are offset from the linear array described by asteroid‐belt objects when 53Mn ages are plotted against combined 129I‐Pb data, supporting the suggestion that 53Mn was radially heterogeneous in the early solar system.  相似文献   

20.
Reliable quantitative mapping of minerals exposed on Vesta's surface is crucial for understanding the crustal composition, petrologic evolution, and surface modification of the howardite, eucrite, and diogenite (HED) parent body. However, mineral abundance estimates derived from visible–near infrared (VIS–NIR) reflectance spectra are complicated by multiple scattering, particle size, and nonlinear mixing effects. Radiative transfer models can be employed to accommodate these issues, and here we assess the utility of such models to accurately and efficiently determine modal mineralogy for a suite of eucrite and olivine‐bearing (harzburgitic) diogenite meteorites. Hapke and Shkuratov radiative transfer models were implemented to simultaneously estimate mineral abundances and particle size from VIS–NIR reflectance spectra of these samples. The models were tested and compared for laboratory‐made binary (pyroxene–plagioclase) and ternary mixtures (pyroxene–olivine–plagioclase) as well as eucrite and diogenite meteorite samples. Results for both models show that the derived mineral abundances are commonly within 5–10% of modal values and the estimated particle sizes are within the expected ranges. Results for the Hapke model suggest a lower detection limit for olivine in HEDs when compared with the Shkuratov model (5% versus 15%). Our current implementation yields lower uncertainties in mineral abundance (commonly <5%) for the Hapke model, though both models have an advantage over typically used parameters such as band depth, position, and shape in that they provide quantitative information on mineral abundance and particle size. These results indicate that both the Hapke and Shkuratov models may be applied to Dawn VIR data in a computationally efficient manner to quantify the spatial distribution of pyroxene, plagioclase, and olivine on the surface of Vesta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号