首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A 435 kg piece of the Mont Dieu iron meteorite (MD) contains cm‐sized silicate inclusions. Based on the concentration of Ni, Ga, Ge, and Ir (8.59 ± 0.32 wt%, 25.4 ± 0.9 ppm, 61 ± 2 ppm, 7.1 ± 0.4 ppm, respectively) in the metal host, this piece can be classified as a IIE nonmagmatic iron. The silicate inclusions possess a chondritic mineralogy and relict chondrules occur throughout the inclusions. Major element analysis, oxygen isotopic analysis (Δ17O = 0.71 ± 0.02‰), and mean Fa and Fs molar contents (Fa15.7 ± 0.4 and Fs14.4 ± 0.5) indicate that MD originated as an H chondrite. Because of strong similarities with Netschaëvo IIE, MD can be classified in the most primitive subgroup of the IIE sequence. 40Ar/39Ar ages of 4536 ± 59 Ma and 4494 ± 95 Ma obtained on pyroxene and plagioclase inclusions show that MD belongs to the old (~4.5 Ga) group of IIE iron meteorites and that it has not been perturbed by any subsequent heating event following its formation. The primitive character of MD sheds light on the nature of its formation process, its thermal history, and the evolution of its parent body.  相似文献   

3.
Abstract— A compilation of the chemical analyses of 241 stony and 36 iron meteorites is presented; 196 analyses were published previously, 81 are new. This compilation includes analyses of new falls, new finds, previously analyzed meteorites, previously analyzed meteorites with suspect values, analyses of separates and inclusions, and analyses of 53 stony and 29 iron meteorites from Antarctica, including one of the “lunar” type. Mean compositions of chondrite falls, finds, and Antarctic chondrites are compared. References are listed for earlier published analyses and an appendix provides an outline of the sampling procedures, sample preparation, and the analytical methods.  相似文献   

4.
Abstract— The concentrations of cosmogenic radionuclides and noble gases in Pitts (IAB) and Horse Creek (ungrouped) provide unambiguous evidence that both irons have a complex exposure history with a first‐stage irradiation of 100–600 Myr under high shielding, followed by a second‐stage exposure of ?1 Myr as small objects. The first‐stage exposure ages of ?100 Myr for Horse Creek and ?600 Myr for Pitts are similar to cosmic‐ray exposure ages of other iron meteorites, and most likely represent the Yarkovsky orbital drift times of irons from their parent bodies in the main asteroid belt to one of the nearby chaotic resonance zones. The short second‐stage exposure ages indicate that collisional debris from recent impact events on their precursor objects was quickly delivered to Earth. The short delivery times suggests that the recent collision events occurred while the precursor objects of Horse Creek and Pitts were either very close to the chaotic resonance zones or already in Earth‐crossing orbits. Since the cosmogenic noble gas records of Horse Creek and Pitts indicate a minimum radius of a few meters for the precursor objects, but do not exclude km‐sized objects, we conclude that these irons may represent fragments of two near‐Earth asteroids, 3103 Eger and 1986 DA, respectively. Finally, we used the cosmogenic nuclide concentrations in Horse Creek, which contains 2.5 wt% Si, to test current model calculations for the production of cosmogenic 10Be, 26Al, and neonisotopes from iron, nickel, and silicon.  相似文献   

5.
Abstract— Samples from a suite of Shergotty—Nakhla—Chassigny (SNC) meteorites were analyzed for their O isotopic ratios by a modified version of the laser fluorination technique. Measured isotopic ratios (17O/16O and 18O/16O) from bulk samples of the Shergottites, EETA79001, Shergotty and Zagami; the Nakhlite Lafayette; and Chassigny are similar to those reported in the literature, as are those from olivine and pyroxene mineral separates from Lafayette. Iddingsite, a preterrestrial alteration product of Lafayette, was measured for the first time as a separate phase. Oxygen isotopic ratios increase with the percentage of iddingsite in a sample to a maximum δ18O of 14.4% for a ~90% separate. Based on these measurements, end-member iddingsite has a δ18O of 15.6%, which places it among other 18O-enriched secondary phases (carbonate and silica) observed in SNC meteorites. The relatively large difference in δ18O between iddingsite and the olivine and pyroxene it replaces (~11%) is typical of low-temperature alteration products. A range of crustal fluid δ18O values can be interpreted from the δ18O for end-member iddingsite, assuming isotopic equilibrium was achieved during low-temperature hydrous alteration (<100 °C; Treiman et al., 1993). The calculated range of values, ?15 to 5%, depends on many factors including: (1) the modal mineralogy of iddingsite, (2) potential isotopic exchange among other O-bearing phases such as host silicate and carbonate, and (3) exchange with evolved or exotic O reservoirs on Mars. Despite the lack of constraints, the calculated range is consistent with isotopic exchange, and possibly equilibria, among components of the CO2-carbonate-iddingsite-H2O system at low temperature. The SNC meteorite samples in this study have Δ17O values that are indistinguishable from bulk Mars (0.30%), except for a single, small sample of iddingsite that has an anomalous Δ17O of ~1.4%. While analytical difficulties make isotopic measurements for this sample problematic, the Δ17O is similar in direction to Δ17O reported for waters extracted from bulk samples of Lafayette (Karlsson et al., 1992). If the Δ17O for iddingsite is confirmed, it can be concluded that evolved or exotic fluids on Mars have contributed volatiles to the O reservoir from which iddingsite formed 130 to 700 Ma ago.  相似文献   

6.
Abstract— The (compositionally) closely related iron meteorite groups IIIE and IIIAB were originally separated based on differences in kamacite bandwidth, the presence of carbides only in the IIIE group, and marginally resolvable differences on the Ga‐Ni and Ge‐Ni diagrams. A total of six IIIE iron meteorites have been analyzed for C and N using secondary ion mass spectrometry, and three of these have also been analyzed for N, Ne, and Ar by stepped combustion. We show that these groups cannot be resolved on the basis of N abundances or isotopic compositions but that they are marginally different in C‐isotopic composition and nitride occurrence. Cosmic‐ray exposure age distributions of the IIIE and IIIAB iron meteorites seem to be significantly different. There is a significant N‐isotopic range among the IIIE iron meteorites. A negative correlation between δ15N and N concentration suggests that the increase in s?15N resulted from diffusional loss of N.  相似文献   

7.
Abstract– The fall of meteorites has been interpreted as divine messages by multitudinous cultures since prehistoric times, and meteorites are still adored as heavenly bodies. Stony meteorites were used to carve birds and other works of art; jewelry and knifes were produced of meteoritic iron for instance by the Inuit society. We here present an approximately 10.6 kg Buddhist sculpture (the “iron man”) made of an iron meteorite, which represents a particularity in religious art and meteorite science. The specific contents of the crucial main (Fe, Ni, Co) and trace (Cr, Ga, Ge) elements indicate an ataxitic iron meteorite with high Ni contents (approximately 16 wt%) and Co (approximately 0.6 wt%) that was used to produce the artifact. In addition, the platinum group elements (PGEs), as well as the internal PGE ratios, exhibit a meteoritic signature. The geochemical data of the meteorite generally match the element values known from fragments of the Chinga ataxite (ungrouped iron) meteorite strewn field discovered in 1913. The provenance of the meteorite as well as of the piece of art strongly points to the border region of eastern Siberia and Mongolia, accordingly. The sculpture possibly portrays the Buddhist god Vai?ravana and might originate in the Bon culture of the eleventh century. However, the ethnological and art historical details of the “iron man” sculpture, as well as the timing of the sculpturing, currently remain speculative.  相似文献   

8.
High‐precision Zn isotopic compositions measured by MC‐ICP‐MS are documented for 32 iron meteorites from various fractionally crystallized and silicate‐bearing groups. The δ66Zn values range from ?0.59‰ up to +5.61‰ with most samples being slightly enriched in the heavier isotopes compared with carbonaceous chondrites (0 < δ66Zn < 0.5). The δ66Zn versus δ68Zn plot of all samples defines a common linear fractionation line, which supports the hypothesis that Zn was derived from a single reservoir or from multiple reservoirs linked by mass‐dependent fractionation processes. Our data for Redfields fall on a mass fractionation line and therefore refute a previous claim of it having an anomalous isotopic composition due to nonmixing of nucleosynthetic products. The negative correlation between δ66Zn and the Zn concentration of IAB and IIE is consistent with mass‐dependent isotopic fractionation due to evaporation with preferential loss of lighter isotopes in the vapor phase. Data for the Zn concentrations and isotopic compositions of two IVA samples demonstrate that volatile depletion in the IVA parent body is not likely the result of evaporation. This is important evidence that favors the incomplete condensation origin for the volatile depletion of the IVA parent body.  相似文献   

9.
Abstract— We analyzed the Steinbach IVA stony‐iron meteorite using scanning electron microscopy (SEM), electron microprobe analysis (EMPA), laser ablation inductively‐coupled‐plasma mass spectroscopy (LA‐ICP‐MS), and modeling techniques. Different and sometimes adjacent low‐Ca pyroxene grains have distinct compositions and evidently crystallized at different stages in a chemically evolving system prior to the solidification of metal and troilite. Early crystallizing pyroxene shows evidence for disequilibrium and formation under conditions of rapid cooling, producing clinobronzite and type 1 pyroxene rich in troilite and other inclusions. Subsequently, type 2 pyroxene crystallized over an extensive fractionation interval. Steinbach probably formed as a cumulate produced by extensive crystal fractionation (?60–70% fractional crystallization) from a high‐temperature (?1450–1490 °C) silicate‐metallic magma. The inferred composition of the precursor magma is best modeled as having formed by ≥30–50% silicate partial melting of a chondritic protolith. If this protolith was similar to an LL chondrite (as implied by O‐isotopic data), then olivine must have separated from the partial melt, and a substantial amount (?53–56%) of FeO must have been reduced in the silicate magma. A model of simultaneous endogenic heating and collisional disruption appears best able to explain the data for Steinbach and other IVA meteorites. Impact disruption occurred while the parent body was substantially molten, causing liquids to separate from solids and oxygen‐bearing gas to vent to space, leading to a molten metal‐rich body that was smaller than the original parent body and that solidified from the outside in. This model can simultaneously explain the characteristics of both stony‐iron and iron IVA meteorites, including the apparent correlation between metal composition and metallographic cooling rate observed for metal.  相似文献   

10.
A slab of the Willamette ungrouped iron contains elongated troilite nodules (up to ~2 × 10 cm) that were crushed and penetrated by wedges of crushed metal during a major impact event. What makes this sample unique is the contrast between the large amount of shock damage and the very small (~1%) amounts of shock melting in the large troilite nodules. The postshock temperature was low, probably ?960 °C. The Widmanstätten pattern has been largely obscured by an episode of postshock annealing that caused recrystallization of the kamacite. The shock and thermal history of Willamette includes (1) initial crystallization and formation of multicentimeter‐size troilite nodules from trapped melt, (2) impact‐induced melting of metal‐sulfide assemblages to form lobate taenite masses a few hundred micrometers in size, (3) impact‐crushing of the nodules and jamming of metal wedges into them, (4) simultaneous crushing of metal grains adjacent to sulfide throughout the meteorite, (5) postshock annealing causing minor recrystallization of metal and troilite, and (6) a late‐stage shock event (and additional annealing) producing Neumann lines in the kamacite.  相似文献   

11.
H.J. Melosh 《Icarus》1984,59(2):234-260
Recent discoveries suggest that some meteorites have originated from major planets or satellites. Although it has been suggested that a large primary impact event might eject rock fragments as secondaries, it was previously supposed that material ejected at several kilometers per second would be highly shocked or perhaps melted. It is shown that a small amount of material (0.01 to 0.05 projectile mass) may be ejected at high velocity shock pressures. The approach utilizes observations of stress-wave propagation from large underground explosions to predict stresses and particle velocities in the near-surface environment. The largest fragments ejected at any velocity are spalls that originate from the target planet's surface. The spall size is proportional to the radius of the primary impactor and the target tensile strength and inversely proportional to ejection velocity. The shock level in the spalls is low, typically half of the dynamic crushing strength of the rock. The model also predicts the aspect ratio of the spalled fragments, the angle of ejection, and the sizes and shock level of other fragments originating deeper in the target. Comparison with data from laboratory experiments, the Ries Crater, and secondary crater sizes shows generally good agreement, although the observed fragment size at ejection velocities greater than 1 km/sec is considerably smaller than the simple version of the theory predicts. The theory indicates that although significant masses of solid material could be ejected from the Moon or Mars by large meteorite impacts, the fragments ejected from ca. 30-km-diameter craters are at most a few tens of meters in diameter if the most optimistic assumptions are made. The maximum fragment diameter is more likely to be about a meter. This theory, however, applies rigorously only up to ejection velocities of ca 1 km/sec. Further numerical extensions are necessary before film conclusions can be drawn, especially for Martian ejecta.  相似文献   

12.
Abstract— The first occurrence of stishovite in an iron meteorite, Muonionalusta (group IVA), is reported. The mineral occurs intimately mixed with amorphous silica, forming tabular grains up to ?3 mm wide, with a hexagonal outline. It was identified using X‐ray diffraction and Raman microspectroscopy. The unit‐cell parameters of stishovite are a = 4.165(3) Å and c = 2.661(6) Å, and its chemical composition is nearly pure SiO2. Raman spectra show relatively sharp bands at 231 and 754 cm?1 and a broad band with an asymmetric shape and a maximum around 500 cm?1. The rare grains are found within troilite nodules together with chromite, daubreelite, and schreibersite. From their composition and morphology, and by comparisons with silica inclusions in, e.g., the Gibeon IVA iron, we conclude that these rare grains represent pseudomorphs after tridymite. The presence of stishovite in Muonionalusta is suggested to reflect shock metamorphic conditions in the IVA parent asteroid during a cosmic impact event.  相似文献   

13.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   

14.
Abstract— Two iron meteorites, identified in 1994, have been recovered from the Province of Québec, Canada. Lac Dodon is a coarse octahedrite of 800 g, displaying only minor evidence of terrestrial weathering. A heat-affected zone up to 1 mm thick is fairly well preserved. Penouille is a medium octahedrite of 72.5 g that was recovered from an ocean beach. Traces of a heat-affected zone are preserved. Analyses reveal that both meteorites are members of group IAB, although Penouille is in the Ni-rich IB tail of the group.  相似文献   

15.
Abstract— The Ocotillo IAB iron meteorite contains small silicate inclusions consisting of olivine, low-Ca pyroxene, chromian diopside, plagioclase, magnesiochromite, apatite, troilite and metal. The ferromagnesian silicates have a small range of Fe/(Fe + Mg) ratios that are not due to zoning. These phases appear to be not well equilibrated. The FeO content of magnesiochromite is lower than values normally seen in silicate assemblages in IAB iron meteorites. The minerals in Ocotillo are generally like silicate assemblages in other IAB meteorites, covering similar composition ranges and exhibiting a metamorphic (granoblastic) texture. An estimate was made of the bulk composition of Ocotillo silicate inclusions. The bulk composition is close to that of ordinary chondrites with the exception of a deficiency in CaO that might be due to a sampling problem associated with the method used to estimate the bulk composition.  相似文献   

16.
Abstract— Characterization of the microstructural features of the metal of the Santa Catharina meteorite was performed using a variety of electron optical techniques. Sample USNM#6293 is chemically homogeneous on the micron scale and has a Ni content of 28.2 wt.%. Its microstructure is similar to that of the Twin City ataxite and contains clear taenite II, i.e., fcc taenite with domains of tetrataenite, < 10 nm in size. Sample USNM#3043 is a more typical Santa Catharina specimen with dark and light regions as observed with the light optical microscope. The dark regions are inhomogeneous and contain 45–50 wt.% Ni and 7–12 wt.% O. The light regions are homogeneous and contain 35 wt.% Ni and no detectable oxygen. The microstructure is that of cloudy zone, i.e., islands of tetrataenite, ~20 nm in size, in a honeycomb matrix. The honeycomb phase contains Ni rich oxide in the dark regions and contains metal, fcc taenite, in the light regions. The original metal structure of USNM#3043 is cloudy zone which formed during cooling into the low temperature miscibility gap of the Fe-Ni phase diagram. The dark regions were developed from the metal by selective corrosion of the honeycomb structure, transforming it into Ni containing oxides, possibly non-stoichiometric Fe2NiO4 while retaining the tetrataenite islands. Using the results of this study, many of the existing discrepancies concerning the microstructure of Santa Catharina can be explained.  相似文献   

17.
Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility‐controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd‐Pt‐W isotope results from this study thus demonstrate that the relative magnitude of neutron capture‐induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.  相似文献   

18.
Abstract— Carbon and nitrogen distributions in iron meteorites, their concentrations in various phases, and their isotopic compositions in certain phases were measured by secondary ion mass spectrometry (SIMS). Taenite (and its decomposition products) is the main carrier of C, except for IAB iron meteorites, where graphite and/or carbide (cohenite) may be the main carrier. Taenite is also the main carrier of N in most iron meteorites unless nitrides (carlsbergite CrN or roaldite (Fe, Ni)4N) are present. Carbon and N distributions in taenite are well correlated unless carbides and/or nitrides are exsolved. There seem to be three types of C and N distributions within taenite. (1) These elements are enriched at the center of taenite (convex type). (2) They are enriched at the edge of taenite (concave type). (3) They are enriched near but some distance away from the edge of taenite (complex type). The first case (1) is explained as equilibrium distribution of C and N in Fe-Ni alloy with M-shape Ni concentration profile. The second case (2) seems to be best explained as diffusion controlled C and N distributions. In the third case (3), the interior of taenite has been transformed to the α phase (kamacite or martensite). Carbon and N were expelled from the α phase and enriched near the inner border of the remaining γ phase. Such differences in the C and N distributions in taenite may reflect different cooling rates of iron meteorites. Nitrogen concentrations in taenite are quite high approaching 1 wt% in some iron meteorites. Nitride (carlsbergite and roaldite) is present in meteorites with high N concentrations in taenite, which suggests that the nitride was formed due to supersaturation of the metallic phases with N. The same tendency is generally observed for C (i.e., high C concentrations in taenite correlate with the presence of carbide and/or graphite). Concentrations of C and N in kamacite are generally below detection limits. Isotopic compositions of C and N in taenite can be measured with a precision of several permil. Isotopic analysis in kamacite in most iron meteorites is not possible because of the low concentrations. The C isotopic compositions seem to be somewhat fractionated among various phases, reflecting closure of C transport at low temperatures. A remarkable isotopic anomaly was observed for the Mundrabilla (IIICD anomalous) meteorite. Nitrogen isotopic compositions of taenite measured by SIMS agree very well with those of the bulk samples measured by conventional mass spectrometry.  相似文献   

19.
Abstract— We measured abundances and isotopic compositions of noble gases in metal and schreibersite of the Acuña (IIIAB) iron meteorite. The concentrations of noble gases in Acuña metal are very low compared to those reported so far for other iron meteorites. The isotopic ratios of He, Ne and Ar indicate that they are mostly of cosmogenic origin. Cosmogenic components are even present in Kr and Xe, which could not have been produced from Fe, Ni and P and are probably due to the spallation of trace elements of higher masses. The high 4He/21Ne ratio of 420 in Acuña metal indicates that the samples were at a deep position within a very large meteoroid. The exposure ages of Acuña were estimated to be 50–200 Ma from 3He, 21Ne and 38Ar abundances and by utilizing the diagrams of production rates vs. the 4He/21Ne ratio based on the Signer-Nier model. The low exposure age of Acuña may indicate a history different from that of other IIIAB irons whose exposure ages cluster at ~670 Ma. Otherwise, Acuña may be one of the samples with the low production rate, which can not be estimated from the diagrams of the Signer-Nier model.  相似文献   

20.
Abstract— Measured Ne isotopes in samples of shergottite ALHA77005 show variations in 21Ne/22Ne ratios and 21Ne abundances that are consistent with the presence of two cosmogenic components: a component produced by nuclear interactions of galactic cosmic rays (GCR) and a component produced at shallow shielding depths (~0–3 cm) by energetic solar flare protons (SCR). We suggest that the 21Ne/22Ne ratio generally can be used to distinguish between SCR and GCR components in many meteorite types. Analysis of cosmogenic Ne produced in chondrite mineral separates, eucrites, and anorthositic lunar rocks, all having diverse major element compositions, indicate that the GCR 21Ne/22Ne ratio increases modestly with relative Mg content. Data for hundreds of chondrite analyses suggest that SCR Ne is present in no more than a very small fraction of chondrites. Examination of literature data for other shergottites, however, indicate that all of these meteorites contain SCR Ne but that it is apparently absent in other SNC meteorites. The ubiquitous presence of SCR Ne in shergottites, in contrast to most other types of meteorites, suggests that the martian origin of shergottites gave them different orbital parameters compared to other meteorites. This in turn may have contributed to slower entry velocities and lesser surface ablation in the atmosphere or even to higher SCR production rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号