首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract— To test different hypotheses of moldavite formation, a major and trace-element study of 25 moldavite tektites and Sm-Nd isotope measurement of three moldavite tektites was completed. The samples were selected from the classical substrewnfields and the newly described locations in Lusatia (Saxony, Germany). Samples with unusual bulk composition were also included. The results confirm earlier studies that the variation in the chemical composition can be explained by single impact and through incomplete mixing of at least three lithographical components dominated by one of the three minerals or mineral groups: dolomite, clay minerals and quartz. An additional endmember, possibly a rare Earth's mantle component, containing high Co, Cr and Ni concentrations is also needed to explain the observed variations in compatible elements of some tektites. Volatile element abundances are low but not necessarily the result of selective volatilization.  相似文献   

3.
4.
5.
Abstract— Jones (1994) demonstrated that fractional crystallization of IIIAB iron meteorites may result in a log Au vs. log Ni plot of constant slope even though kAu and kNi change. Jones' example is a special case, however, and does not necessarily describe behavior by other elements or in other metallic magmas.  相似文献   

6.
7.
8.
The general relativistic model of Cooperstock and Tieu, which attempts to fit rotation curves of spiral galaxies without invoking dark matter, is tested empirically using observations of the Milky Way. In particular, predictions for the mass density in the solar neighbourhood and the vertical density distribution at the position of the Sun are compared with observations. It is shown that the model of Cooperstock and Tieu, which was so constructed that it gives an excellent fit of the observed rotation curve, singularly fails to reproduce the observed local mass density and the vertical density profile of the Milky Way.  相似文献   

9.
10.
Das et al. (2012) claim that in several cases nominal cosmic ray exposure ages derived from concentrations of cosmogenic Ne in individual olivine grains separated from chondrules substantially exceed exposure ages of matrix samples. Some grains were also reported to show larger apparent exposure ages than other grains from the same chondrule. The authors conclude that the excesses were caused by an exposure of chondrules to high fluences of solar energetic particles and suggest that their data provide direct evidence for a highly active phase of the early Sun, similar to what is observed in X‐ray emissions of recent naked T‐Tauri stars. Here, we show that the production rates of cosmogenic Ne used by Das et al. (2012) to derive nominal cosmic ray exposure ages of their olivine grains are often much too low, as the reported major element concentrations in many cases sum up to considerably less than 100% even if converted to oxides. In contrast, adopted element concentrations for matrix samples are basically self‐consistent. A precompaction exposure of chondrules to a very high flux of solar energetic particles is thus not supported by the data presented by Das et al. (2012). Das et al. (2012) claim that in several cases nominal cosmic ray exposure ages derived from concentrations of cosmogenic Ne in individual olivine grains separated from chondrules substantially exceed exposure ages of matrix samples. Some grains were also reported to show larger apparent exposure ages than other grains from the same chondrule. The authors conclude that the excesses were caused by an exposure of chondrules to high fluences of solar energetic particles and suggest that their data provide direct evidence for a highly active phase of the early Sun, similar to what is observed in X‐ray emissions of recent naked T‐Tauri stars. Here, we show that the production rates of cosmogenic Ne used by Das et al. (2012) to derive nominal cosmic ray exposure ages of their olivine grains are often much too low, as the reported major element concentrations in many cases sum up to considerably less than 100% even if converted to oxides. In contrast, adopted element concentrations for matrix samples are basically self‐consistent. A precompaction exposure of chondrules to a very high flux of solar energetic particles is thus not supported by the data presented by Das et al. (2012).  相似文献   

11.
12.
13.
14.
Ureilites are carbon‐rich ultramafic (olivine + dominantly low‐Ca pyroxene) achondrites with poorly understood petrogenesis. One major problem concerns the origin of extensive variation in FeO content (olivine core Fo values ranging from approximately 75 to 95) among the individual ureilites. The two main competing hypotheses to explain this variation are: (1) equilibrium smelting, in which ureilite Fo values were established by pressure‐dependent (depth‐linked) carbon redox reactions on the ureilite parent body during partial melting; or (2) nebular inheritance, in which the variation in FeO contents was derived from ureilite precursors and was preserved during partial melting. The paper “Parent body depth‐pressure‐temperature relationships and the style of the ureilite anatexis” by Warren (2012) discusses a series of topics related to ureilite petrogenesis. In each case, an argument is presented within the context of smelting versus nonsmelting models. Collectively, these arguments create the impression that there are many valid arguments against smelting. The purpose of this comment is to point out flaws in some of these arguments, and/or to show that the issues they address are independent of smelting versus nonsmelting models. Both equilibrium smelting and nebular inheritance (simple anatexis) models face challenges in explaining all the properties of ureilites, but both remain viable.  相似文献   

15.
We comment on the recent paper by A.D. Dolgov, S.H. Hansen, S. Pastor and D.V. Semikoz (DHPS) [Astropart. Phys. 14 (2000) 79] on the generation of neutrino asymmetries from active–sterile neutrino oscillations. We demonstrate that the approximate asymmetry evolution equation obtained therein is an expansion, up to a minor discrepancy, of the well-established static approximation equation, valid only when the supposedly new higher order correction term is small. In the regime where this so-called “back-reaction” term is large and artificially terminates the asymmetry growth, their evolution equation ceases to be a faithful approximation to the quantum kinetic equations simply because pure Mikheyev–Smirnov–Wolfenstein (MSW) transitions have been neglected. At low temperatures the MSW effect is the dominant asymmetry amplifier. Neither the static nor the DHPS approach contains this important physics. Therefore we conclude that the DHPS results have sufficient veracity at the onset of explosive asymmetry generation, but are invalid in the ensuing low temperature epoch where MSW conversions are able to enhance the asymmetry to values of order 0.2–0.37. DHPS do claim to find a significant final asymmetry for very large δm2 values. However, for this regime the effective potential they employed is not valid.  相似文献   

16.
Abstract— Gorter and Glikson (2000) proposed that the Fohn‐1 structure in the Timor Sea north of Australia probably is an impact structure. Examination of their evidence reveals that it is almost impossible to confirm any of their conclusions, as the authors do not provide sufficient detail of their experimental methods. Problems with the presentation of both seismic and geochemical data cast further doubt on their conclusions. Absence of evidence for shock metamorphism and non‐chondritic siderophile element patterns in the few samples analysed make it likely that Fohn‐1 is neither a probable, nor even a possible, impact structure.  相似文献   

17.
18.
Mandler and Elkins‐Tanton ( 2013 ) recently proposed an upgraded magma ocean model for the differentiation history of the giant asteroid 4 Vesta. They show that a combination of both equilibrium crystallization and fractional crystallization processes can reproduce the major element compositions of eucritic melts and broadly the range of mineral compositions observed in diogenites. They assert that their model accounts for all the howardites, eucrites, and diogenites (HEDs), and use it to predict the crustal thickness and the proportions of the various lithologies. Here, we show that their model fails to explain the trace element diversity of the diogenites, contrary to their claim. The diversity of the heavy REE enrichment exhibited by the orthopyroxenes in diogenites is inconsistent with crystallization of these cumulates in either shallow magma chambers replenished by melts from a magma ocean or in a magma ocean. Thus, proportions of the various HED lithologies and the crustal thickness predicted from this model are not necessarily valid.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号