首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain types of granite in mountainous areas are microscopically sheeted to a depth of 50 m due to unloading under the stress field that reflects slope morphology. Micro-sheets generally strike parallel to major slope surfaces and gently dip downslope, forming cataclinal overdip slopes. The cataclinal overdip slope accelerates creep movement of micro-sheeted granite, which in turn loosens and disintegrates granite via the widening or neoformation of cracks, probably in combination with stress release, temperature change, and changes in water content near the ground surface. The surface portion of micro-sheeted granite is thus loosened with a well-defined basal front, which finally slides in response to heavy rain. Innumerable landslides of this type occurred in Hiroshima Prefecture, western Japan, following the heavy rainstorm of 29 June 1999. Following such landslides, the weathering of micro-sheeted granite exposed on the landslide scar recommences, setting the stage for future landslide.  相似文献   

2.
FLATModel is a two-dimensional shallow-water approximation code with corrections and modifications that create a simulation tool adapted to debris-flows behaviour. FLATModel uses the finite volume method with the numerical implementation of the Godunov scheme and includes correction terms regarding the effect of flow over high slopes and curvature. Additionally, the stop-and-go phenomenon, the basal entrainment and a correction regarding the front inclination of the final deposit are incorporated into FLATModel. In addition, different flow resistance laws were integrated in the numerical code including Bingham, Herschel–Bulkley and Voellmy fluid model. Firstly, our numerical model was validated using analytical solutions of a dam-break scenario and published data on a laboratory experiment. Secondly, three real events, which occurred in the northeastern part of the Iberian Peninsula, were back-calculated. Although field observations of the three events are not very detailed, the back-analyses revealed interesting patterns on the flow dynamics, and the numerical results generally showed good agreement with field data. Comparing the different flow resistance laws, the Voellmy fluid model presents the best behaviour regarding both the flow behaviour and the deposit characteristics. Preliminary simulation runs incorporating the effect of basal entrainment offered satisfactory results, although the final volume is rather sensitive on the selected friction angle of channel-bed material. The outcomes regarding the correction of the calculated front inclination of the final deposit showed that this implementation strongly improves the simulation results and better represents steep fronts of final deposits.  相似文献   

3.
2003年3月31日,巴东县在连续强降雨作用下出现多处山体斜坡地质灾害,造成大量房屋破坏和人员伤亡。通过现场综合调查,笔者认为灾害比较严重的桐木园斜坡灾害体发球典型的山坡型泥石流,着重剖析了该山坡型泥石流的变形特征及其成灾机理,并探讨了斜坡浅表层松散岩土体快速变形的临界降雨阀值和预指标。  相似文献   

4.
The Upper Cretaceous Toyajo Formation is distributed around the Mt. Toyajo in the Aridagawa area, Wakayama, southwestern Japan. The formation is subdivided into three newly defined members, the Nakaibara Siltstone Member, Hasegawa Muddy Sandstone Member, and Buyo Sandstone Member, in ascending order. Close field observation elucidated the detailed biostratigraphy of the Toyajo Formation, and high-precision biostratigraphic correlation was made with the Yezo Group in Hokkaido (northern Japan) and Sakhalin and the Izumi Group in southwestern Japan.The Toyajo Formation contains diversified lower Campanian to upper Campanian heteromorph ammonoid assemblages, including Eubostrychoceras and Scaphites. Discovery of the heteromorph fauna demonstrates that scaphitid ammonoids survived until Campanian time in the northwestern Pacific region. Although Eubostrychoceras elongatum has been known in the northeastern Pacific region, the occurrence of this species in the northwestern Pacific region has been uncertain before. The rich occurrence of E. elongatum in the Aridagawa area indicates that this species was distributed widely in the northern Pacific realm.The Toyajo Formation is similar to the Izumi Group in various geologic features, and may indicate that the Toyajo Formation was deposited in a strike-slip basin along the Chichibu Belt formed by the movement along the Kurosegawa Tectonic Zone in the latest Cretaceous, like the Izumi Group, along the Median Tectonic Line.  相似文献   

5.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   

6.
A waste rock pile with initial high sulfide (10–20 wt.%) and low carbonate content (1–2 wt.%) located at Dlouhá Ves in the Czech Republic has been investigated in two profiles (excavation and outcrop) using powder X-ray diffraction, electron microprobe analysis, bulk composition analysis and Mössbauer spectroscopy. The mobility of arsenic and other contaminants was evaluated by leaching experiments. The primary source of the arsenic was arsenopyrite, which was significantly oxidized in both profiles. The principal As-bearing phase at the excavation profile was goethite, located at the top of the profile, and minerals of the jarosite group which were found down to its base. Melanterite, rich in copper and zinc, was found in a sulfide-rich, lower part of the profile together with anglesite. At the outcrop profile, minerals of the jarosite–beudantite group, scorodite and kaňkite prevail and no Fe(II)-minerals were found. The paste pH was lower at the excavation profile (minimum about 1.9) than at the outcrop profile (minimum of about 2.8). Processes in the pile are affected by the pyrite/arsenopyrite ratio, where high pyrite content decreases the As/S ratio and results in the formation of jarosite group minerals and low pH conditions. Where arsenopyrite predominates, sulphides are coated by scorodite and other Fe–As phases like schwertmannite, which limit their further oxidation.  相似文献   

7.
受特殊自然地质环境和经济飞速发展的强烈影响,大中城市及国民生产值高度集中的沿海地区正在面临地质灾害的严重威胁;其中泥石流灾害是主要4大地质灾害之一。在泥石流灾害研究中,区域性防治及其防治工程实践是预测预报重要依据。文章以浙江省小流域泥石流为研究对象,在系统勘测调查解剖的基础之上,运用地质工程与防灾减灾工程学的原理,采用工程勘察与室内分析相结合的手段,综合分析了浙江省小流域泥石流的背景地质条件、成因特征、对易发程度及趋势分别作了评价、预测。结果认为,地形地质条件是泥石流发生的基础,自然暴雨是引发的主因,在一定自然条件下较易再次发生泥石流灾害。  相似文献   

8.
The Algoa Basin is an onshore rift basin filled by an Upper Mesozoic non-marine and shallow marine sedimentary sequence. The middle unit of this clastic succession is assigned to the Lower Cretaceous Kirkwood Formation, known to host a wealth of plant and animal fossils together with poorly documented lignites, amber and charcoal clasts. This study is motivated by the growing interest in the impact of wildfires on the palaeoenvironment during the high-oxygen, Cretaceous world. It has been hypothesised that frequent and severe Cretaceous wildfires triggered large-scale non-marine denudation events, altering the sedimentation dynamics and influencing the evolution of ecosystems. In order to investigate this phenomenon, charcoal-bearing sedimentary rocks and plant fossil assemblages of the Kirkwood Formation have been studied at the Bezuidenhouts River locality, ∼50 km north of Port Elizabeth (Eastern Cape, South Africa).Detailed field observations of the sedimentary facies suggest that deposition occurred in a meandering fluvial environment with mature, vegetated floodplains. Depositional trends within a charcoal-rich bed (i.e., stratification, flattening and decrease in charcoal clast size down-current) indicate that a charcoal-rich debris flow, linked to a post-wildfire flood event, became diluted by fluvial flow. Palaeocurrent indicators (e.g., orientation of fossil logs) suggest unidirectional currents from SW to NE, which are somewhat inconsistent with the previously reported regional palaeocurrent directions in the Kirkwood Formation.To gain insights into the fire-influenced dynamics of the Early Cretaceous ecosystems, the macro-plant fossil assemblages of the Kirkwood Formation were considered, with reference to the responses of modern plant analogues to wildfire. Of the plant orders reported from macrofossils of the Kirkwood Formation, the Cycadales, Pinales and Filicales, are known to have produced large woody or fibrous trunks and stems, or in the case of the Bennettitales more densely branched, divaricate architectures, and are likely to have provided the bulk of fuel for wildfires, with fern elements dominating groundcover niches. The particular role of these plants in the Early Cretaceous wildfire palaeoecology of the Algoa Basin is a topic for an ongoing study, but the Bezuidenhouts River locality appears to record the aftermath of a severe crownfire that led to mass tree mortality.  相似文献   

9.
The Higo terrane in west-central Kyushu Island, southwest Japan consists from north to south of the Manotani, Higo and Ryuhozan metamorphic complexes, which are intruded by the Higo plutonic complex (Miyanohara tonalite and Shiraishino granodiorite).The Higo and Manotani metamorphic complexes indicate an imbricate crustal section in which a sequence of metamorphic rocks with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The metamorphic rocks in these complexes can be divided into five metamorphic zones (zone A to zone E) from top to base (i.e., from north to south) on the basis of mineral parageneses of pelitic rocks. Greenschist-facies mineral assemblages in zone A (the Manotani metamorphic complex) give way to amphibolite-facies assemblages in zones B, C and D, which in turn are replaced by granulite-facies assemblages in zone E of the Higo metamorphic complex. The highest-grade part of the complex (zone E) indicates peak P–T conditions of ca. 720 MPa and ca. 870 °C. In addition highly aluminous Spr-bearing granulites and related high-temperature metamorphic rocks occur as blocks in peridotite intrusions and show UHT-metamorphic conditions of ca. 900 MPa and ca. 950 °C. The prograde and retrograde P–T evolution paths of the Higo and Manotani metamorphic complexes are estimated using reaction textures, mineral inclusion analyses and mineral chemistries, especially in zones A and D, which show a clockwise P–T path from Lws-including Pmp–Act field to Act–Chl–Epi field in zone A and St–Ky field to And field through Sil field in zone D.The Higo metamorphic complex has been traditionally considered to be the western-end of the Ryoke metamorphic belt in the Japanese Islands or part of the Kurosegawa–Paleo Ryoke terrane in south-west Japan. However, recent detailed studies including Permo–Triassic age (ca. 250 Ma) determinations from this complex indicate a close relationship with the high-grade metamorphic terranes in eastern-most Asia (e.g., north Dabie terrane) with similar metamorphic and igneous characteristics, protolith assembly, and metamorphic and igneous ages. The north Dabie high-grade terrane as a collisional metamorphic zone between the North China and the South China cratons could be extended to the N-NE along the transcurrent fault (Tan-Lu Fault) as the Sulu belt in Shandong Peninsula and the Imjingang belt in Korean Peninsula. The Higo and Manotani metamorphic complexes as well as the Hida–Oki terrane in Japan would also have belonged to this type of collisional terrane and then experienced a top-to-the-south displacement with forming a regional nappe structure before the intrusion of younger Shiraishino granodiorite (ca. 120 Ma).  相似文献   

10.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

11.
Agpaitic rocks comprise most of the exposed part of the 1.16 Ga old, 8 × 17 km large and about 1700 m thick Ilímaussaq intrusion in South Greenland. Within these, more than 600 m thick sequence of sodalite-rich “naujaites” (mainly sodalite + arfvedsonite + alkali feldspar + nepheline + eudialyte + aenigmatite) are interpreted as a sodalite flotation cumulate. Sodalites show two to three different zones in cathodoluminescence (CL) and at least two zones in thin sections. The CL zones can be related to chemical differences detectable by electron microprobe, whereas relations with optical zonations are less obvious. Compositional trends in sodalite reflect trends in the evolution of volatile contents in the melt. The sodalite at Ilímaussaq is almost free of Ca and closely corresponds to the pure Na–Cl sodalite endmember with about 7 wt.% of Cl; S contents reach up to 0.9 wt.%. Cl/Br ratios range from 500 to 1700. Raman spectroscopy shows that S is present as [SO4]2− in sodalite, although sphalerite (ZnS) is a stable phase in naujaites. Peralkalinity and fO2 conditions allow S2− and [SO4]2− to be present contemporaneously.

The whole naujaite sequence is divided into two parts, an upper part with low, homogeneous S contents and Cl/Br ratios in the sodalite cores, and a lower part with strongly variable and higher S contents and with Cl/Br ratios, which are decreasing downwards. The details of the S content and the Cl/Br ratio evolution show that sodalite strongly influences the halogen contents of the melt by scavenging Cl and Br.

The naujaites were formed from a highly reduced, halogen-rich magma in equilibrium with magmatic methane at about 800 °C, which, upon ascent, cooling and fractionation, exsolved an aqueous fluid phase. Both fluids were trapped in separate inclusions indicating their immiscibility.

Micrometer-sized aegirine crystals and primary hydrocarbon-bearing inclusions are abundant in the crystal cores. The inclusions were trapped at pressures up to 4 kbar, although the emplacement pressure of the intrusion is about 1 kbar. This indicates growth of the sodalite during melt ascent and a very effective mechanism of trace element scavenging during sodalite growth. Sodalite rims are devoid of aegirine or primary hydrocarbon inclusions and probably reflect the emplacement stage.  相似文献   


12.
Lower temperature eclogite (with T = 600 °C) represents a significant part of the occurrences of eclogite in orogenic belts. ‘True’ eclogite, with, for example, garnet + omphacite >70%, is well represented in such an occurrence. Calculated phase equilibria in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO), for just one rock composition – that of a representative mid‐ocean ridge basalt, morb – are used to see under what circumstances ‘true’ eclogite is predicted to occur. The variables considered are not only pressure (P) and temperature (T) but also water content and oxidation state. The latter two variables are known to exert a significant control on mineral assemblage but are difficult to establish retrospectively from the observed rocks themselves. It is found that whereas oxidation state does have a strong effect on mineral assemblage, the key control on developing ‘true’ eclogite is shown to be temperature and water content. If temperature is established to be <600 °C, water content has to be low (less or much less than that for H2O saturation) in order for ‘true’ eclogite to form. Moreover, unless pressure is at the high end in the range considered, lawsonite eclogite and ‘true’ eclogite will tend to be mutually exclusive, with the former requiring high water content at the lower temperature where it occurs, but the latter requiring low water content.  相似文献   

13.
A tectonic mélange exposed on land is examined to reveal relationships between mélange formation, underplating, and deformation mechanisms, focusing on the deformation of basaltic rocks. The studied Mugi Mélange of the Shimanto Belt is composed of a shale matrix surrounding various blocks of sandstone, pelagic sediments, and basalts. The mélange was formed during Late Cretaceous to early Tertiary times in a subduction zone under PT conditions of 150–200 °C and 6–7 km depth as estimated from vitrinite reflectance and quartz veins fluid inclusions. The mélange represents a range of deformation mechanisms; pressure solution with micro-scale cataclasis in the shale matrix, brittle tension cracking in the blocks, and ubiquitous strong cataclasis in the basal portion of basaltic layers. The cataclastic deformation in the basalts suggests a breakage of a topographic high in the seismogenic depth.  相似文献   

14.
Accretionary complexes record the histories of changes in physical properties of sediments from unlithified sediments to lithified rocks through the deformation processes along subduction interface. The trench sediment suffered various deformation of particulate flow, pressure solution deformation and cataclastic faultings from ductile to brittle regime during accretion in subduction zone. Tectonic mélange is a characteristic rock in on-land accretionary complexes. The dominant deformation mechanism of tectonic mélange formation is pressure solution on the basis of microscopic observation. However, brittle slickenlines are also commonly observed on mélange foliations at the outcrop scale. Although the slickenlines as a brittle failure is common on the surface of the pressure solution foliation, the relationship of their kinetic are still uncertain. Detailed observations of slickenlines suggest that they are formed by reactivation of the mélange foliations, which indicates that the slickenlines are developed after formation of block in matrix texture characterized in mélange. In addition, mélange foliations are cut by faults related to underplating of oceanic materials. Therefore, formation of slickenlines occur before underplating in a relatively deep portion along subduction interface. On the basis of P-T conditions reported from other parts of the Cretaceous Shimanto Belt, the mélange formation and underplating is inferred to have occurred around the seismic front or within the seismogenic zone. The change in deformation mechanisms from pressure solution to brittle failure may be the first change in physical properties from plastic to brittle around seismic front.  相似文献   

15.
A specific question about the Himalayas is whether the orogeny grew by distributed extrusion or discrete thrusting. To place firm constraints on tectonic models for the orogeny, kinematic, thermobarometric and geochronological investigations have been undertaken across the Greater Himalayan Crystalline Complex (GHC) in the Nyalam region, south‐central Tibet. The GHC in this section is divided into the lower, upper and uppermost GHC, with kinematically top‐to‐the‐south, alternating with top‐to‐the‐north shear senses. A new thrust named the Nyalam thrust is recognized between the lower and upper GHC, with a 3 kbar pressure reversion, top‐to‐the‐south thrust sense, and was active after the exhumation of the GHC. Peak temperature reached ~749 °C in the cordierite zone, and decreased southwards to 633–667 °C in the kyanite and sillimanite‐muscovite zones, and northwards to greenschist facies at the top of the South Tibetan Detachment System (STDS). Pressure at peak temperature reached a maximum value in the kyanite zone of 9.0–12.6 kbar and decreased northwards to ~4.1 kbar in the cordierite zone. Zircon U‐Pb ages of a sillimanite migmatite and an undeformed leucogranite dyke cutting the mylonitized rocks in the STDS reveal a long‐lived partial melting of the GHC, which initiated at 39.7–34 Ma and ceased at 14.1 Ma. Synthesizing the obtained and collected results, a revised channel flow model is proposed by considering the effect of heat advection and convection by melt and magma migration. Our new model suggests that distributed processes like channel flow dominated during the growth of the Himalayan orogen, while discrete thrusting occurred in a later period as a secondary process.  相似文献   

16.
Preserved in Quebrada de las Lajas, near San Juan, Argentina, is an ancient subaqueous proglacial sedimentary succession that includes a small‐scale (ca 50 m thick and ca 200 m wide) channel–levée system with excellent exposure of the channel axis and levée sediments. Coeval deposition of both the channel axis and the levées can be demonstrated clearly by lateral correlation of individual beds. The channel axis consists predominantly of a disorganized, pebble to boulder conglomerate with a poorly sorted matrix. The channel axis varies from 10 to 20 m wide and has a total amalgamated thickness of around 50 m. Beds fine gradationally away from the cobble–boulder conglomerates of the channel axis within a few metres, transitioning to well‐organized pebble to cobble conglomerates and sandstones of the channel margin. Within 60 m outboard of the channel axis in both directions, perpendicular to the trend of the channel axis, the mean grain size of the beds in the levées is silt to fine‐grained sand. Deposits in this channel–levée system are the product of both debris flows (channel axis) and co‐genetic turbidity currents (channel margins and levées). Bed thicknesses in the levées increase for up to 10 to 25 m away from the channel axis, beyond which bed thicknesses decrease with increasing distance. The positions of the bed thickness maxima define the levée crests, and the thinning beds constitute the outer levée slopes. From these relationships it is clear that the levée crest migrated both away from and toward the channel axis, and varied in height above the channel axis from 4 to 5 m (undecompacted), whereas the height of the levée crest relative to the distal levée varied from 4·5 to 10 m, indicating that the channel was at times super‐elevated relative to the distal levée. Bed thickness decay on the outside of the levée crest can be described quite well with a power‐law function (R2 = 0·85), whereas the thickness decay from the levée crest toward the channel axis follows a linear function (R2 = 0·78). Grain‐size changes are quite predictable from the channel margin outward, and follow logarithmic (R2 = 0·77) or power‐law (R2 = 0·72) decay curves, either of which fit the data quite well. This study demonstrates that, in at least this case: (i) levée thickness trends can be directly related to channel‐flow processes; (ii) individual bed thickness changes may control overall levée geometry; and (iii) levée and channel deposits can be coeval.  相似文献   

17.
Anisotropy of magnetic susceptibility (AMS) and paleomagnetic methods have been applied on the middle Miocene–Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan in order to identify the invisible regional deformation sense as well as the intensity of deformation of sediments. The southern sequences of the two peninsulas were subjected to syn-sedimentary deformation of folding and faulting generated in compressional tectonics. A previous result of the AMS experiment on the sequences shows a development of a strong magnetic lineation. Thus, it is conceivable that the lineation had to be generated during the process of deformation, and in a direction perpendicular to the shortening. However, the orientation of the magnetic lineations is inconsistent among the different tectonic domains in the southern sequence. The paleomagnetic declination in each domain reveals a clockwise rotation in various degrees. Reconstructed directions of the magnetic lineations show a consistent pattern in the east–west direction, suggesting that the sedimentary sequence was subjected to a north-southward compression. In contrast, the compressive direction of the sediment cover on the Pliocene–Pleistocene sequence reveals a northwest direction. Our results suggest that the Philippine Sea Plate had been subducting northward during the middle Miocene–Pliocene, and changed its direction during the Pliocene.  相似文献   

18.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

19.
The Ortosa deposit (NW Spain) in the northern part of the Rio Narcea Gold Belt (RNGB) is located in the Cantabrian Zone of the Iberian Massif. This zone corresponds to the westernmost exposure of the European Hercynides. The deposit is hosted by marine shales, siltstones, calcareous siltstones and interbedded sandy limestones of the upper part of the Silurian Furada Formation. These rocks are intruded by a main stock and numerous sills and dikes consisting of a reduced, ilmenite-bearing quartz-monzodiorite (Ortosa intrusion). Skarn metasomatism and associated gold mineralization overprinted these sedimentary and igneous rocks, forming endo- and exoskarns.The earliest stage of alteration involved potassium metasomatism from which metasomatic biotite developed in the hornfels around the intrusion. In the endoskarn, the first metasomatic mineral to form is actinolite. Subsequently, quartz, pyroxene (Hd30–45), and sulfides (mainly arsenopyrite and pyrrhotite) formed, followed by a second generation of amphibole (ferroactinolite and ferrohornblende). The exoskarn is a pyroxene-garnet skarn, which is often banded. The prograde minerals are pyroxene (Hd10–30) and grossular garnet. The retrograde mineralogy consists of hedenbergite-rich pyroxene (Hd50–87), amphibole (ferroactinolite–ferrohornblende), and the metallic minerals with minor fluorapatite, K-feldspar, albite, epidote–clinozoisite, vesuvianite and calcite. A final stage of retrograde alteration is characterized by calcite, quartz, and chlorite.Pyrrhotite and arsenopyrite are the more abundant metallic minerals, and löllingite, chalcopyrite, pyrite and sphalerite are present in smaller amounts. The gold occurs as native gold and maldonite, and is accompanied by hedleyite, native bismuth, and bismuthinite. These Au–Bi–Te mineral assemblages occupy cavities and fractures in the arsenopyrite or in the pyrrhotite.Estimated physiochemical conditions of formation based on the composition and stability fields of major calc-silicate and sulfide minerals indicate that the hedenbergite-rich pyroxene and the earliest sulfides (löllingite–pyrrhotite–arsenopyrite) crystallized at temperatures between 470 and 535°C at low log fS2 between −10 and −6.5 and low log fO2 of −22. The Ortosa skarns can be included in the reduced gold skarn subtype defined by Meinert (Mineralogical Association of Canada, Quebec city, Que., Canada, 1998, 26,359–414 ).  相似文献   

20.
Classic porphyry Cu–Mo deposits are mostly characterized by close temporal and spatial relationships between Cu and Mo mineralization. The northern Dabate Cu–Mo deposit is a newly discovered porphyry Cu–Mo polymetallic deposit in western Tianshan, northwest China. The Cu mineralization postdates the Mo mineralization and is located in shallower levels in the deposit, which is different from most classic porphyry Cu–Mo deposits. Detailed field investigations, together with microthermometry, laser Raman spectroscopy, and O‐isotope studies of fluid inclusions, were conducted to investigate the origin and evolution of ore‐forming fluids from the main Mo to main Cu stage of mineralization in the deposit. The results show that the ore‐forming fluids of the main Mo stage belonged to an NaCl + H2O system of medium to high temperatures (280–310°C) and low salinities (2–4 wt% NaCl equivalent (eq.)), whereas that of the main Cu stage belonged to an F‐rich NaCl + CO2 + H2O system of medium to high temperatures (230–260°C) and medium to low salinities (4–10 wt% NaCl eq.). The δ18O values of the ore‐forming fluids decrease from 3.7–7.8‰ in the main Mo stage to ?7.5 to ?2.9‰ in the main Cu stage. These data indicate that the separation of Cu and Mo was closely related to a large‐scale vapor–brine separation of the early ore‐forming fluids, which produced the Mo‐bearing and Cu‐bearing fluids. Subsequently, the relatively reducing (CH4‐rich) Mo‐bearing, ore‐forming fluids, dominantly of magmatic origin, caused mineralization in the rhyolite porphyry due to fluid boiling, whereas the relatively oxidizing (CO2‐rich) Cu‐bearing, ore‐forming fluids mixed with meteoric water and precipitated chalcopyrite within the crushed zone at the contact between rhyolite porphyry and wall rock. We suggest that the separation of Cu and Mo in the deposit may be attributed to differences in the chemical properties of Cu and Mo, large‐scale vapor–brine separation of early ore‐forming fluids, and changes in oxygen fugacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号