首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Niumiangou landslide (~7.5 × 106 m3) was the largest that occurred in the town of Yingxiu (the epicentral area) during the 2008 Wenchuan earthquake. This landslide originated on a steep slope (~30°) that was located directly above the rupture surface of the responsible fault and then traveled ~2 km after flowing down the axes of two gently sloping (<12°) valleys. Evidence at the site indicates that the landslide materials were highly fluidized and underwent rapid movement. To examine the initiation and movement mechanisms of this landslide, we performed a detailed field survey, conducted laboratory tests on samples taken from the field, and analyzed the seismic motion. We conclude that the landside materials were displaced due to seismic loading during the earthquake and that liquefaction may have been triggered in saturated layers above the sliding surface with progressive downslope sliding, which resulted in the high mobility of the displaced materials. The liquefaction of colluvial deposits along the travel path due to loading by the sliding mass enhanced the mobility of the displaced mass originating in the source area. Using an energy-based approach, we estimated the dissipated energy in our cyclic loading test and the possible energy dissipated to the soil layer on the slope by the earthquake. We infer that the seismic energy available for the initiation of the slope failure in the source area may have greatly exceeded the amount required for the initiation of the liquefaction failure. The slope instability might have been triggered several seconds after the arrival of seismic motion.  相似文献   

2.
《Engineering Geology》2002,63(1-2):169-185
Heavy rainfall from 26 to 31 August 1998 triggered many landslides in Nishigo Village of southern Fukushima Prefecture, Japan. The Hiegaesi landslide, a long-runout landslide with travel angle of 11°, which occurred in loamy volcanic-ash/pumice layer and was deposited in a nearby rice paddy, was investigated. In an observation pit dug in the middle part of the landslide deposit, the sliding zone just above the deflected rice plants was observed, and it was confirmed that grain crushing occurred in the sliding zone. The triggering and sliding mechanisms of this landslide then were investigated by ring-shear tests in laboratory. For the triggering mechanism, one saturated naturally drained test (test A: torque-controlled test) and one saturated undrained test (test B: speed-controlled test) were conducted on the samples taken from the source area of the landslide. Even in the naturally drained test opening the upper drain valve of the shear box, a temporary liquefaction occurred. In the undrained test, excess pore-pressure was generated along with shearing, and “sliding-surface liquefaction” phenomenon was observed. The effective stress and shear resistance finally decreased to near zero. These results can explain the observed phenomenon of small friction resistance like a flow of liquid when the sliding mass slid out of the source area. For the sliding mechanism of the landslide in the rice paddy, saturated undrained test (test C: speed-controlled test) was performed on soil sample above the deflected rice plants. The apparent friction angle obtained in this test was 8°. In addition, the residual friction angle measured after test B and test C was the same value of 41°. Combining with the observation on the shear zone in the ring-shear box after test C, it is concluded that, during the sliding in rice paddy, the undrained shear strength of the soil layer itself mainly influenced the high mobility of the landslide, probably because the friction between rice plants and soils is greater than the undrained shear strength inside the soil mass.  相似文献   

3.
The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow.

The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium.

Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes.

Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide.  相似文献   


4.
In this study the factors affecting the retrogressive Yaka Landslide, its mechanism and the hazard of debris flow on the town of Yaka are investigated. In the landslide area, the first landslide was small and occurred in March 2006 on the lower part of the Alaard?ç Slope near the Gelendost District town of Yaka (Isparta, SW Turkey). The second, the Yaka Landslide, was large and occurred on 19 February 2007 in the soil-like marl on the central part of Alaard?ç Slope. The geometry of the failure surface was circular and the depth of the failure surface was about 3 m. Following the landslide, a 85,800 m3 of displaced material transformed to a debris flow. Then, the debris flow moved down the Eglence Valley, traveling a total distance of about 750 m. The town of Yaka is located 1,600 m downstream of Eglence Creek and hence poses a considerable risk of debris flow, should the creek be temporarily dammed as a result of further mass movement. Material from the debris accumulation has been deposited on the base of Eglence Valley and has formed a debris-dam lake behind a debris dam. Trees, agricultural areas, and weirs in the Eglence Creek have seen serious damage resulting from the debris flow. The slope angle, slope aspect and elevation of the area in this study were generated using a GIS-based digital elevation model (DEM). The stability of the Alaard?ç Slope was assessed using limit equilibrium analysis with undrained peak and residual shear strength parameters. In the stability analyses, laboratory test results performed on the soil-like marls were used. It was determined that the Alaard?ç Slope is found to be stable under dry conditions and unstable under completely saturated conditions. The Alaard?ç Slope and its vicinity is a paleolandslide area, and there the factor of safety for sliding was found to be about 1.0 under saturated conditions. The Alaard?ç Slope and the deposited earthen materials in Eglence Creek could easily be triggered into movement by any factors or combination of factors, such as prolonged or heavy rainfall, snowmelt or an earthquake. It was established that the depth of the debris flow initiated on the Yaka Landslide reached up to 8 m in Eglence Creek at the point it is 20 m wide. If this deposited material in Eglence Creek is set into motion, the canal that passes through Yaka, with its respective width and depth of 7 and 1.45 m, could not possibly discharge the flow. The destruction or spillover of this canal in Yaka could bring catastrophic loss to residents which are located within 3–5 m of the bank of the canal. Furthermore, if material present in the landslide source area slides and this displaced material puts pressure on the unstable deposited material in Eglence Creek, even more catastrophic loss would occur to the town of Yaka. In this study, it was determined that debris flows are still a major hazard to Yaka and its population of 3,000. The results provided in this study could help citizens, planners, and engineers to reduce losses caused by existing and future landslides and debris flow in rainfall and snowmelt conditions by means of prevention and mitigation.  相似文献   

5.
2019年6月10—13日,龙川县发生持续强降雨,导致全县境内发生大量滑坡、泥石流灾害,贝岭镇米贝村是三个重灾区之一。本文以贝岭镇米贝村6号沟发生的滑坡-泥石流链生灾害为研究对象,在野外精细化调查测量基础上,结合数值模拟分析与计算,对链生灾害特征与成灾机理展开研究。研究发现:①6号沟内共发育7处浅层土质小型滑坡,仅3号滑坡体与部分6号滑坡体转化为泥石流,构成泥石流主要物源,其余滑坡未构成持续性影响;②持续降雨下渗,坡体由非饱和向饱和状态转变,坡表形成连续饱和区,孔隙水压力的增加与孔隙水的软化促使土体强度降低,加之坡体饱和自重的增大,斜坡发生浅表层失稳破坏;③降雨的持续下渗与支沟沟源“漏斗状”地形下的地表汇水快速增大滑坡松散堆积体内的含水率,促使其物理性质发生变化,在重力势能下呈流态状启动、运动转化为泥石流。降雨结构影响滑坡-泥石流链生过程,前期降雨引发滑坡、后期降雨启动形成泥石流,滑坡与泥石流的发生表现出阶段性特征。研究成果有助于指导当地政府进一步开展滑坡-泥石流链生灾害的防灾减灾工作,也为该地区未来区域预警研究工作提供理论支撑。  相似文献   

6.
Abundant landslide deposits were triggered by the Wenchuan earthquake, providing a rich source of material for subsequent debris flows or slope failures under rainfall conditions. A good understanding of the physical and mechanical properties of the landslide deposits is very important to the research on slope failure mechanisms and the initiation of debris flow. Laboratory biaxial compression tests are used to study the material compositions and water content impacts on the mechanical properties of landslide deposits, and a discrete element method (a bond-contact model) is used to study the particle stiffness, bond force, friction coefficient and confining stress impact on the mechanical behaviors and the relationships between the numerical and experimental parameters. The experimental results show that the failure stress of landslide deposits is decreased with increasing content of fine particles and also with increased water content, especially at the initial increasing stage. Cohesion of the saturated landslide deposits is increased, but the friction angle is decreased with the increase in the fine particle content. Shear strength parameters (the cohesion and friction angle) are decreased with the increasing water content at the initial increasing stage, and then, they slowly decrease. There is a critical value of the water content at 5%–7% (in weight) for the failure stress and shear strength parameters of the landslide deposits. Quadratic equations are presented to describe the relation between the bond force and cohesion, and the numerical friction coefficient and the experimental friction angle.  相似文献   

7.
Risk evaluation for earthquake-induced rapid and long-travel landslides in densely populated urban areas is currently the most important disaster mitigation task in landslide-threatened areas throughout the world. The research achievements of the IPL M-101 APERITIF project were applied to two urban areas in megacities of Japan. One site is in the upper slope of the Nikawa landslide site where previous movements were triggered by the 1995 Hyogoken-Nambu earthquake. During detailed investigation, the slope was found to be at risk from a rapid and long-travel landslide induced by sliding surface liquefaction by earthquakes similar in scale to the 1995 event. A new plan to prevent the occurrence of this phenomenon was proposed and the plan was implemented. Another area is the Tama residential area near Tokyo. A set of field and laboratory investigations including laser scanner, geological drilling and ring-shear tests showed that there was a risk of sliding surface liquefaction for both sites. A geotechnical computer simulation (Rapid/LS) using the quantitative data obtained in the study allowed urban landslide hazard zoning to be made at individual street level.  相似文献   

8.
本文的主要目的是探讨地震诱发的高速远程滑坡的液化机理。通过排水和不排水环剪的对比试验,以及对地震诱发的不同类型的滑坡实例的现场调查,考察了土结构破坏和土粒子破碎产生的滑动带液化的不同机理。土结构破坏引起的液化在滑坡发生时即可产生,而土粒子破碎引起的液化需要在滑动过程中产生。在此基础上提出了滑动带向滑体内的扩展模型,并分析了两种液化机理引起的滑坡体形态的差异。本文的独到之处在于揭示了土粒子破碎对高速远程滑坡的重要影响,强调了在滑坡灾害预测研究中必须同等重视滑坡体结构和土粒子易破碎性的调查分析。  相似文献   

9.
陕西华县高楼村黄土滑坡泥流的成因分析   总被引:2,自引:0,他引:2  
滑坡泥流具有高速远程运动的特点,一般先形成滑坡,随即转为高速泥流,虽不多见,但破坏性大。陕西华县高楼村黄土滑坡泥流是一个由于引水渠漏水引起的典型案例。对滑坡形成区后壁黄土的物理性质测试表明,可转化为泥流的滑坡具有疏松的结构,一般饱和含水率大于液限。对其在饱和状态的三轴固结不排水试验表明,试样在很小应变下发生剪缩,产生较高的超孔隙水压力,超孔隙水压力达到一定程度,使其由固态转化为流态,从而形成快速、远距离的流动。当边坡被引水渠渗漏的水浸湿,潜在滑带几乎处于饱和时,在静水压力作用下,其稳定性接近临界状态; 一旦开始破坏,剪力作用下疏松的结构发生剪缩,沿滑动带产生较高的超静孔隙水压力,导致滑带呈流态高速下滑,此时的滑带只有很低的强度,因此沿着坡度较陡的沟底保持高速流动,到沟口平坦处势能完全释放后才停滞。用Sassa K.滑坡运动模型,对该滑坡的运动过程模拟,模拟结果与现场实测滑坡发生后的地形较为一致。  相似文献   

10.
Sediment archives from a mountain lake are used as indicators of seismotectonic activity in the Grenoble area (French western Alps, 45°N). Sedimentological analysis (texture and grain-size characteristics) exhibits several layers resulting from instantaneous deposits in Lake Laffrey: six debris flow events up to 8 cm thick can be attributed to slope failure along the western flank of the basin. Dating with 210Pb and 137Cs gamma counting techniques and the reconnaissance of historical events, provide a constrained age-depth model. Over the last 250 years, five of such debris flow deposits could be related to historical earthquakes of MSK intensities greater than VI over an area of <60 km. One debris flow deposit triggered at the beginning of the last century can be related to an historical landslide possibly triggered by the artificial regulation of the lake level.  相似文献   

11.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

12.
滑坡-泥石流通常由降雨触发,是一种危害极大的灾害链。本文以甘肃天水市大沟村泥岩滑坡-泥石流为例,从滑坡后壁取原状泥岩样进行固结不排水(CU)三轴剪切试验,获取强度参数,利用LS_RAPID软件对该滑坡-泥石流运动过程进行模拟,再现了滑坡从发生到转化为泥石流的过程。试验表明饱和泥岩的摩擦角仅11,小于沟道坡度。模拟表明滑坡下滑至坡脚时滑体平均速度为5.2ms-1,对沟道滑床具有极大的冲击作用,滑床泥岩在滑坡强大的冲击作用下强度进一步降低,有利于滑坡体迅速转化为泥石流,并造成更大的致灾范围,模拟堆积范围和形态与实测基本一致。  相似文献   

13.
四川都江堰三溪村710高位山体滑坡研究   总被引:2,自引:0,他引:2  
2013年7月10日上午10时,四川都江堰市中兴镇三溪村受极端暴雨影响发生高位山体滑坡灾害,滑坡-碎屑堆积体方量超过150104m3,其中1#滑坡-碎屑堆积体长度1.26km,造成三溪村一组重大人员伤亡。笔者在野外实地调查和室内研究分析的基础上,总结了都江堰三溪村滑坡的基本特征,研究了其启动运动机制和滑动速度,主要认识如下:(1)该滑坡为一处高位山体滑坡,后缘白垩系砂砾岩地层高速滑动后剧烈撞击-铲刮-偏转后铲动坡体上的松散堆积层而形成高位山体滑坡-碎屑流灾害。(2)根据滑坡的运动及堆积特征,将1#滑坡划分为砂砾岩滑动区、碰撞铲刮区和碎屑流堆积覆盖区3部分。(3)7月8日8时至10日8时,中兴镇三溪村的持续强降雨天气过程(都江堰市3d的降雨量相当于该地区年降雨总量的44.1%),直接触发了滑坡的发生。(4)三溪村滑坡的发生受2008年汶川地震、特殊的岩土体性质、地形地貌条件以及极端暴雨事件的综合影响,地震、地形为其发育提供了基础条件,极端暴雨事件为其直接诱发因素。(5)建议加强高位山体滑坡的研究,尤其是远程滑坡-碎屑流的早期识别和预警。  相似文献   

14.
The rehabilitation construction in the reservoir area of Xiangjiaba hydropower station in Southwest China has caused many landslides. A shallow progressive failure that occurred on the resettlement site of Xin’an Town of Pingshan County in Sichuan Province was selected as a case study. This landslide occurred in a long and gently inclined area by slope excavation under rainfall conditions. It is about 3.0 m deep with a total length of 35 m and is composed of some subfailures. Undisturbed samples were retrieved, on which the basic properties, shear strength, expansive potential, mineral compositions, and microstructures were tested and analyzed. The results show (1) the landsliding materials belong to medium expansive soil, consisting of the clay minerals of illite–smectite (I/S) and chlorite–smectite (C/S); (2) shear strength of the soil is sensitive to water, which greatly decreases once saturated; and (3) many fractures and relatively large pores are developed in the soils. Back analysis of the landslide shows that the shear strength at failure is less than the residual shear strength obtained from lab tests, indicating that some processes contributing to the slope failure could not be reflected by the shear box test. Based on the above analysis, the progressive process of the slope failure was interpreted, and it is inferred that the rainfall entered into the slope mainly through fractures and relatively large pores in the soil. It caused not only the great decrease in soil strength but also the swelling trend. The latter one would lead to growth, interaction, and coalescence of the fractures. Soon after, these fractures formed the shear planes (zones), which further decreased the resistance of the landslide. Under these favorable conditions, the slope excavation directly triggered the failure.  相似文献   

15.
A seasonal rain front (Baiu front) accompanied a long-term accumulation of precipitation propagated over the wide areas of the main island of Japan during 15–24 July 2006. In Okaya City, Nagano Prefecture, several flow-type landslides occurred in the early morning of 19 July 2006, claiming eight lives. Among these landslides, a most peculiar complex earth slide–earth flow occurred on a north gentle slope of the upstream portion of the Motosawagawa River. In the source area, volcanoclastic soils overlying tuffaceous rocks at about 4-m depth slid due to the prolonged precipitation that raised the water table level in the soil. Along with the travel path, the failed materials fluidized causing the liquefaction of the volcanoclastic soils underlain by volcanic black ash soils. The resulting flow spread over a wide area up to the final deposition. Constant volume box-shear tests on undisturbed volcanoclastic soil specimens taken from the source area showed effective normal stress tended to decrease during shearing. The ring shear tests on saturated disturbed specimens produced the large loss of shear resistance, which may explain the fluidized motion of the complex landslide.  相似文献   

16.
近年来,在汶川地震等强震区常发生一种特大的高位滑坡地质灾害,它从高陡斜坡上部位置剪出并形成凌空加速坠落,具有撞击粉碎效应和动力侵蚀效应,导致滑体解体碎化,从而转化为高速远程碎屑流滑动或泥石流流动,并铲刮下部岩土体,使体积明显增加。新磨滑坡就是这种典型,它发生于2017年6月24日,滑坡后缘高程约3450m,前缘高程约2250 m,高差1200 m,水平距离2800 m,堆积体体积达1637×10~4m~3,摧毁了新磨村村庄,导致83人死亡。新磨滑坡地处叠溪较场弧形构造带前弧西翼,母岩为中三叠统中厚层变砂岩夹板岩,是1933年叠溪Ms7.5级震中区(烈度X度)和汶川Ms8.0级强震区(烈度IX度),形成震裂山体。滑源区分布多组不连续结构面,将厚层块状岩体分割成碎裂块体,在高程3150~3450 m区间形成明显的压裂鼓胀区,特别是存在2组反倾节理带,具有典型的"锁固段"失稳机理。滑坡体高位剪出滑动,连续加载并堆积于斜坡体上部,体积达390×10~4m~3,导致残坡积岩土层失稳并转化为管道型碎屑流;碎屑流高速流滑至斜坡下部老滑坡堆积体后,因前方地形开阔、坡度变缓,转化为扩散型碎屑流散落堆积,具有"高速远程"成灾模式。据此,可建立强震山区高位滑坡的早期识别方法,当陡倾山脊存在大型岩质高位滑坡时,应当考虑冲击作用带来的动力侵蚀效应和堆积加载效应,特别是沿沟谷赋存丰富的地下水时,发生高速远程滑坡的可能性将明显增加。因此,在地质灾害调查排查中,在高位岩质滑坡剪出口下方的斜坡堆积体上的聚居区等应划定为地质灾害危险区。在强震山区地质灾害研究中,不仅应采用静力学理论分析滑坡的失稳机理,而且应采用动力学方法加强运动过程的成灾模式研究。  相似文献   

17.
石碑塬滑坡黄土液化特征及其影响因素研究   总被引:1,自引:0,他引:1  
石碑塬滑坡是1920年海原地震触发的大型黄土流滑,认识其破坏特征与发生机制对于黄土边坡长距离液化失稳机制的研究非常重要。对石碑塬黄土滑坡的调查和研究表明,饱和黄土或高含水率黄土具有很高的液化势和流态破坏势,在强震作用下,饱和黄土易发生液化或流滑。对石碑塬滑坡的7组原状黄土样品进行振动三轴剪切试验,并结合其微观特征分析,探讨了循环振动荷载作用下的饱和黄土孔隙水压力-应变增长模型,分析了振动液化过程中液化应力比与黄土粒度组成、土体微观结构参数及饱和度之间的关系。结果表明:黏粒含量越低,振动作用下饱和黄土孔隙水压力响应越快,液化应力比越低;黄土孔隙比越大,孔隙结构分形维数越大,液化应力比越低,振动液化后黄土孔隙分形维数降低,结构较液化之前更为致密;饱和度对黄土粒间胶结物质的赋存状态及黄土结构强度影响很大,同一土体饱和度越高,溶滤于孔隙水中的离子浓度越高,土体粒间接触点(或胶结点)越容易发生断裂,使得黄土结构强度降低,液化应力比降低。  相似文献   

18.
The Algerian margin is a seismically active region, where during the last century, several large magnitude earthquakes took place. This study combines geotechnical and sedimentological data with numerical modelling to quantitatively assess the present-day slope stability of the Algerian margin. Geotechnical laboratory tests, such as cyclic triaxial tests, oedometric tests and vane shear tests were carried out on sediment cores collected on the study area. The liquefaction potential of a sediment column located about 30 km from the Boumerdès earthquake epicentre of 21st May 2003 was evaluated theoretically for an earthquake of M w  = 6.8. We show that thin sand and silt beds such as those described on recovered sediment cores are the main cause of sediment deformation and liquefaction during earthquakes. Numerical calculations showed that the slope failure may occur during an earthquake characterised by a PGA in excess of 0.1g, and also that, under a PGA of 0.2g liquefaction could be triggered in shallow silty–sandy deposits. Moreover, comparison of the predicted slope failure with failure geometries inferred from seafloor morphology showed that earthquakes and subsequent mass movements could explain the present-day morphology of the study area.  相似文献   

19.
The mass movement process of a debris avalanche is a complex dynamic system and is influenced by topographic conditions, material composition, sliding-bed surface conditions and other factors. A discrete element method is used to simulate the mass movement process of debris avalanches and is validated by laboratory flume tests. Sensitivity analyses for the model parameters show that a low bond strength indicates that a small impact force can lead to slope failure. The friction coefficient has a little effect on the mass movement process. However, high particle stiffness and bond strength causes the sliding material to behave like a rigid block of rock; therefore low bond strength and particle stiffness are selected to simulate the laboratory flume tests. The velocity of the sliding material increases with the increasing slope of the flume. If the sliding material hits a barrier, the travel direction will change and energy dissipation will occur, resulting in the sudden decrease in velocity. With an increase in landslide volume, the model parameters particle stiffness and parallel bond strength should be increased to ensure the reasonableness of the simulated results. When the landslide volume is not large enough, the selection of those model parameters has no significant effect on the movement process. The proper selection of model parameters is very important for the reasonableness of the simulated results.  相似文献   

20.
黑方台黄土斜坡变形破坏机理研究   总被引:1,自引:2,他引:1       下载免费PDF全文
黑方台常年农业灌溉引起地下水位上升,在透水性差的粉质黏土层顶部形成了厚度不断增大的饱和黄土软弱带,导致斜坡蠕动变形诱发了大量的黄土滑坡,滑坡体在地下水的浸润作用下转化为黄土泥流向前运动。为对黄土斜坡的变形破坏机理进行分析研究,进行了8个围压下的固结不排水试验。试验结果表明:饱和黄土应力应变模式表现为强烈的应变软化剪缩型,并具有一定的稳态特性。300 kPa围压以下,试样强度丧失,土体完全液化,其余围压下的试样产生部分液化,抵抗变形能力增加,土体应力状态可划分为完全液化区和部分液化区。斜坡的变形破坏特征因上覆黄土厚度不同而有所差异,通过插值计算,黄土层厚度大于临界黄土厚度(约20 m)时,斜坡产生突发性滑动变形破坏,反之斜坡产生缓慢变形的黄土泥流。研究结果证明了黑方台削方减载治理工程的科学性,并为滑坡的防治和治理提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号