首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Twentieth Century Reanalysis (20CR) holds the distinction of having the longest record length (140-year; 1871–2010) of any existing global atmospheric reanalysis. If the record can be shown to be homogenous, then it would be the first reanalysis suitable for long-term trend assessments, including those of the regional hydrologic cycle. On the other hand, if discontinuities exist, then their detection and attribution—either to artificial observational shocks or climate change—is critical to their proper treatment. Previous research suggested that the quintupling of 20CR’s assimilated observation counts over the central United States was the primary cause of inhomogeneities for that region. The same work also revealed that, depending on the season, the complete record could be considered homogenous. In this study, we apply the Bai-Perron structural change point test to extend these analyses globally. A rigorous evaluation of 20CR’s (in)homogeneity is performed, composed of detailed quantitative analyses on regional, seasonal, inter-variable, and intra-ensemble bases. The 20CR record is shown to be homogenous (natural) for 69 (89) years at 50 % of land grids, based on analysis of the July 2 m air temperature. On average 54 % (41 %) of the grids between 60°S and 60°N are free from artificial inhomogenetites in their February (July) time series. Of the more than 853,376 abrupt shifts detected in 26 variable fields over two monthly time series, approximately 72 % are non-climate in origin; 25 % exceed 1.8 standard deviations of the preceding time series. The knock-on effect of inhomogeneities in 20CR’s boundary forcing and surface pressure data inputs to its surface analysis fields is implicated. In the future, reassessing these inhomogeneities will be imperative to achieving a more definitive attribution of 20CR’s abrupt shifts.  相似文献   

2.
 Forty one years (1958–1998) of NCEP reanalysis data are used to perform a set of statistical analyses, investigating the interactions between the sea surface temperature (SST), the storm track activity (STA) and the time mean atmospheric circulation in the North Atlantic-Europe (NAE) region. When the atmospheric region of study is restricted to Europe, the singular value decomposition (SVD) lead-lag analysis between seasonal 500 hPa geopotential height (Z500) and SST captures a significant covariance between a summer SST anomaly and a strong winter anticyclonic anomaly over Europe. The summer SST pattern is close to the first empirical orthogonal function (EOF) of SST for the consecutive months J-A-S-O-N. The same analysis, but extending the atmospheric area of interest to the entire NAE region, points out the same signal with a phase shift of one month. A more zonally oriented North-Atlantic-Oscillation-like (NAO) pattern is then found as the SST structure remains practically unchanged. This summer SST anomaly is found to persist through surface heat fluxes exchanges until winter, when it can finally have an impact on the atmospheric circulation. Composites are made from the former SST SVD scores, showing the winter STA and different transient and stationary eddies diagnostics associated with the extreme positive and negative events of the SST anomaly. These suggest that the SST anomaly induces an anomalous stationary wave in winter, creating an initially small anticyclonic anomaly over Europe. Anomalous transient eddies located over northern Europe then strengthen this anomaly and maintain it during winter, thus acting as a positive feedback. Received: 15 September 2000 / Accepted: 17 April 2001  相似文献   

3.
This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting(WRF) model, forced by the Twentieth Century Reanalysis(20CR-v2). The whole experiment is a 111-year(1900–2010) continuous run at 50 km horizontal resolution. Comparisons of climatic means and seasonal cycles among observations, 20CR-v2, and WRF results during the last 30 years(1981–2010) in China are presented, with a focus on surface air temperature and precipitation in both summer and winter. The WRF results reproduce the main features of surface air temperature in the two seasons in China, and outperform 20CR-v2 in regional details due to topographic forcing. Summer surface air temperature biases are reduced by as much as 1°C–2°C. For precipitation, the simulation results reproduce the decreasing pattern from Southeast to Northwest China in winter. For summer rainfall, the WRF simulation results reproduce the correct magnitude and position of heavy rainfall around the southeastern coastal area, and are better than 20CR-v2. One of the significant improvements is that an unrealistic center of summer precipitation in Southeast China present in 20CR-v2 is eliminated. However, the simulated results underestimate winter surface air temperature in northern China and winter rainfall in some regions in southeastern China. The mean seasonal cycles of surface air temperature and precipitation are captured well over most of sub-regions by the WRF model.  相似文献   

4.
We suggest that climate variability in Europe for the “pre-industrial” period 1500–1900 is fundamentally a consequence of internal fluctuations of the climate system. This is because a model simulation, using fixed pre-industrial forcing, in several important aspects is consistent with recent observational reconstructions at high temporal resolution. This includes extreme warm and cold seasonal events as well as different measures of the decadal to multi-decadal variance. Significant trends of 50-year duration can be seen in the model simulation. While the global temperature is highly correlated with ENSO (El Nino- Southern Oscillation), European seasonal temperature is only weakly correlated with the global temperature broadly consistent with data from ERA-40 reanalyses. Seasonal temperature anomalies of the European land area are largely controlled by the position of the North Atlantic storm tracks. We believe the result is highly relevant for the interpretation of past observational records suggesting that the effect of external forcing appears to be of secondary importance. That variations in the solar irradiation could have been a credible cause of climate variations during the last centuries, as suggested in some previous studies, is presumably due to the fact that the models used in these studies may have underestimated the internal variability of the climate. The general interpretation from this study is that the past climate is just one of many possible realizations and thus in many respects not reproducible in its time evolution with a general circulation model but only reproducible in a statistical sense.  相似文献   

5.
Recent results from an enhanced greenhouse-gas scenario over Europe suggest that climate change might not only imply a general mean warming at the surface, but also a pronounced increase in interannual surface temperature variability during the summer season (Schär et al., Nature 427:332–336, 2004). It has been proposed that the underlying physical mechanism is related to land surface-atmosphere interactions. In this study we expand the previous analysis by including results from a heterogeneous ensemble of 11 high-resolution climate models from the PRUDENCE project. All simulations considered comprise 30-year control and enhanced greenhouse-gas scenario periods. While there is considerable spread in the models’ ability to represent the observed summer variability, all models show some increase in variability for the scenario period, confirming the main result of the previous study. Averaged over a large-scale Central European domain, the models simulate an increase in the standard deviation of summer mean temperatures between 20 and 80%. The amplification occurs predominantly over land points and is particularly pronounced for surface temperature, but also evident for precipitation. It is also found that the simulated changes in Central European summer conditions are characterized by an emergence of dry and warm years, with early and intensified depletion of root-zone soil moisture. There is thus some evidence that the change in variability may be linked to the dynamics of soil-moisture storage and the associated feedbacks on the surface energy balance and precipitation.  相似文献   

6.
7.
Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (?22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.  相似文献   

8.
9.
The ability of five, global coupled climate models to simulate important atmospheric circulation characteristics in the Southern Hemisphere for the period 1960–1999 is assessed. The circulation features examined are the Southern Hemisphere annular mode (SAM), the semi-annual oscillation (SAO) and the quasi-stationary zonal wave 3 (ZW3). The models assessed are the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3), the Commonwealth Scientific and Industrial Research Organisation Mark 3, the Geophysical Fluid Dynamics Laboratory Model, the Goddard Institute for Space Studies Model ER (GISS-ER) and the UK Meteorological Office Hadley Center Coupled Model Version 3. The simulations were compared to the NCAR–NCEP reanalyses. The models simulate a SAO which differs spatially from the observed over the Pacific and Indian oceans. The amplitudes are too high over the southern ocean and too low over the midlatitudes. These differences are attributed to a circumpolar trough which is too deep and extends too far north, and to the inability of the models to simulate the middle to high latitude temperature gradient. The SAM is well-represented spatially by most models but there are important differences which may influence the flow over the Pacific and in the region extending from the Ross to Weddell Seas. The observed trend towards positive polarity in the SAM is apparent in the ensemble averages of the GISS-ER and CCSM3 simulations, suggesting that the trend is due to external forcing by changes in the concentration of ozone and greenhouse gases. ZW3 is well-represented by the models but the observed trend towards positive phases of ZW3 is not apparent in the simulations suggesting that the observed trend may be due to natural variability, not external forcing.  相似文献   

10.
A scenario of European climate change for the late twenty-first century is described, using a high-resolution state-of-the-art model. A time-slice approach is used, whereby the atmospheric general circulation model, HadAM3P, was integrated for two periods, 1960–1990 and 2070–2100, using the SRES A2 scenario. For the first time an ensemble of such experiments was produced, along with appropriate statistical tests for assessing significance. The focus is on changes to the statistics of seasonal means, and includes analysis of both multi-year means and interannual variance. All four seasons are assessed, and anomalies are mapped for surface air temperature, precipitation and snow mass. Mechanisms are proposed where these are dominated by straightforward local processes. In winter, the largest warming occurs over eastern Europe, up to 7°C, mean snow mass is reduced by at least 80% except over Scandinavia, and precipitation increases over all but the southernmost parts of Europe. In summer, temperatures rise by 6–9°C south of about 50°N, and mean rainfall is substantially reduced over the same area. In spring and autumn, anomalies tend to be weaker, but often display patterns similar to the preceding season, reflecting the inertia of the land surface component of the climate system. Changes in interannual variance are substantial in the solsticial seasons for many regions (note that for precipitation, variance estimates are scaled by the square of the mean). In winter, interannual variability of near-surface air temperature is considerably reduced over much of Europe, and the relative variability of precipitation is reduced north of about 50°N. In summer, the (relative) interannual variance of both variables increases over much of the continent.  相似文献   

11.
12.
We examine the representation of the mean state and interannual variability of Antarctic sea ice in six simulations of the twentieth century from coupled models participating in the Intergovernmental Panel on Climate Change fourth assessment report. The simulations exhibit a largely seasonal southern hemisphere ice cover, as observed. There is a considerable scatter in the monthly simulated climatological ice extent among different models, but no consistent bias when compared to observations. The scatter in maximum winter ice extent among different models is correlated to the strength of the climatological zonal winds suggesting that wind forced ice transport is responsible for much of this scatter. Observations show that the leading mode of southern hemisphere ice variability exhibits a dipole structure with anomalies of one sign in the Atlantic sector associated with anomalies of the opposite sign in the Pacific sector. The observed ice anomalies also exhibit eastward propagation with the Antarctic circumpolar current, as part of the documented Antarctic circumpolar wave phenomenon. Many of the models do simulate dipole-like behavior in sea ice anomalies as the leading mode of ice variability, but there is a large discrepancy in the eastward propagation of these anomalies among the different models. Consistent with observations, the simulated Antarctic dipole-like variations in the ice cover are led by sea-level pressure anomalies in the Amundsen/ Bellingshausen Sea. These are associated, to different degrees in different models, with both the southern annular mode and the El Nino-Southern Oscillation (ENSO). There are indications that the magnitude of the influence of ENSO on the southern hemisphere ice cover is related to the strength of ENSO events simulated by the different models.  相似文献   

13.
利用海陆风和山谷风的机制和特点来分析万宁温度、降水分布及变化原因。  相似文献   

14.
The so-called ‘European Migrant Crisis’ has been blamed on armed conflict and economic misery, particularly in the Middle East and Sub-Saharan Africa. Some have suggested that this process has been exacerbated by climate change and weather events. In this paper, we evaluate these claims, focusing on the role of droughts in influencing irregular migration flows to the European Union. Drawing on temporally disaggregated data on the detection of unauthorized migrants at EU external borders, we examine how weather shocks affect irregular migration. We show that weather events may indeed influence migration. Yet, in contradiction to the findings from recent research, we find no evidence that a drought in a sending country increases unauthorized migration to the EU. If anything, and while not entirely conclusive, the incidence of drought seems rather to exert a negative, albeit moderate, impact on the size of migration flows, in particular for countries dependent on agriculture. Conversely, higher levels of rainfall increase migration. We interpret this as evidence that international migration is cost-prohibitive, and that adverse weather shocks reinforce existing financial barriers to migration.  相似文献   

15.
The roles of anthropogenic climate change and internal climate variability in causing the Mediterranean region’s late 20th Century extended winter drying trend are examined using 19 coupled models from the Intergovernmental Panel on Climate Change Fourth Assessment Report. The observed drying was influenced by the robust positive trend in the North Atlantic Oscillation (NAO) from the 1960s to the 1990s. Model simulations and observations are used to assess the probable relative roles of radiative forcing, and internal variability in explaining the circulation trend that drove much of the precipitation change. Using the multi-model ensemble we assess how well the models can produce multidecadal trends of realistic magnitude, and apply signal-to-noise maximizing EOF analysis to obtain a best estimate of the models’ (mean) sea-level pressure (SLP) and precipitation responses to changes in radiative forcing. The observed SLP and Mediterranean precipitation fields are regressed onto the timeseries associated with the models’ externally forced pattern and the implied linear trends in both fields between 1960 and 1999 are calculated. It is concluded that the radiatively forced trends are a small fraction of the total observed trends. Instead it is argued that the robust trends in the observed NAO and Mediterranean rainfall during this period were largely due to multidecadal internal variability with a small contribution from the external forcing. Differences between the observed and NAO-associated precipitation trends are consistent with those expected as a response to radiative forcing. The radiatively forced trends in circulation and precipitation are expected to strengthen in the current century and this study highlights the importance of their contribution to future precipitation changes in the region.  相似文献   

16.
17.
As the impacts of climate-change on resource-dependent industries manifest, there is a commensurate effort to identify and implement strategies to reduce them. Yet, even when useful knowledge and tools exist, there can be poor adoption of adaptation strategies. We examine the reasons behind sub-optimal adoption of seasonal climate forecasts by graziers for managing climate variability. We surveyed 100 graziers in north-east Queensland, Australia and examined the influence of adaptive capacity, resource-dependency and forecast-perception on uptake. Technical perceptions were not important. Strategic skills, environmental awareness and social capital were. Results suggest that social factors (but not technical factors) are significant. These insights are important for adaptation planning and for maximising the resilience of communities and industries dependent on climate-sensitive resources.  相似文献   

18.
应用探空观测资料评估几类再分析资料在中国区域的适用性   总被引:10,自引:4,他引:10  
赵天保  符淙斌 《大气科学》2009,33(3):634-648
通过与中国8个不同区域温度场和高度场的探空观测资料相比较发现, ERA-40、NCEP/NCAR和NCEP/DOE等再分析资料所描述的温度场和高度场产品的平均值以及年际变化特征等与观测结果的差异均在夏季比较明显, 尤其1970年代以前在中国的西部和西南部地区的差别较为显著。其中, 温度场的差别主要存在于对流层上层; 高度场的绝对偏差也主要出现在对流层上层, 而它们在年际变化特征及其长期变化趋势上的差别则反映在对流层中、下层, 特别是NCEP/NCAR对流层中、下层的夏季高度场在1970年代以前存在着过于明显的“低压” 现象, 从而夸大了很多地区的年代际气候变化特征。就大多数地区而言, ERA-40在中国区域气候变化研究中具有相对较好的适用性, 特别是在年代际气候变化研究中要明显好于NCEP/NCAR。研究还表明, NCEP/DOE与NCEP/NCAR在大多数地区除了在均值上有所不同外, 它们的年际变化特征则并无显著差别。  相似文献   

19.
利用麻省理工学院海洋环流模式研究了风应力输入到海洋中的能量的气候变率特征。结果表明:风应力输入到海洋中的能量对气候变化有显著的响应。在北大西洋涛动(North Atlantic Oscillation,NAO)正位相的年份,风应力输入到海洋中的能量的大值区北移且加强,主要由于暴风路径的北移和天气尺度大气扰动的加强导致;同样,在南半球环状模(Southern Annular Mode,SAM)正位相年份输入到南大洋的能量大值区南移并加强,且输入到南极大陆沿岸流中的能量也有显著增加。经验正交函数分解分析结果表明:NAO主导了风应力输入到北大西洋区域的能量变化。SAM解释了南大洋区域风应力输入能量的第一模态,第二、三模态解释了受ENSO(El Niňo-Southern Oscillation)影响的情况。最近几十年,在南大洋区域,风应力及其输入能量的年代际变化都有所增强,而在北半球的中高纬度区域有所下降。  相似文献   

20.
The relationship between atmospheric blocking over Europe and the Atlantic eddy-driven jet stream is investigated in the NCEP/NCAR Reanalysis and in a climate model. This is carried out using a bidimensional blocking index based on geopotential height and a diagnostic providing daily latitudinal position and strength of the jet stream. It is shown that European Blocking (EB) is not decoupled from the jet stream but it is mainly associated with its poleward displacements. Moreover, the whole blocking area placed on the equatorward side of the jet stream, broadly ranging from Azores up to Scandinavia, emerges as associated with poleward jet displacements. The diagnostics are hence applied to two different climate model simulations in order to evaluate the biases in the jet stream and in the blocking representation. This analysis highlights large underestimation of EB, typical feature of general circulation models. Interestingly, observed blocking and jet biases over the Euro-Atlantic area are consistent with the blocking-jet relationship observed in the NCEP/NCAR Reanalysis. Finally, the importance of sea surface temperatures (SSTs) is investigated showing that realistic SSTs can reduce the bias in the jet stream variability but not in the frequency of EB. We conclude highlighting that blocking-related diagnostics can provide more information about the Euro-Atlantic variability than diagnostics simply based on the Atlantic jet stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号