首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SL-AV global semi-Lagrangian model of Hydrometcenter of Russia is used for considering the issues of practical predictability of the Standardized Precipitation Index (SPI) recommended by WMO. The index values are computed using the actual data (observations and reanalysis) taken as a reference and the forecast (hindcast) data interpolated to the stations (236 stations on the CIS territory). The analysis of practical predictability is based on diagnostic verification as well as on the model verification measures recommended by WMO. The statistically significant useful signal was detected on monthly and seasonal integration intervals. No useful information is found for the second- and third-month forecasts. A case study for the Republic of Kazakhstan (July 1989) demonstrates the dependence of forecast skill on the atmospheric circulation patterns. It is revealed that in the case of meridional atmospheric circulation forms the model resolution increases and, in some cases, not only moderate but also severe drought can be predicted.  相似文献   

2.
Summary This study investigates the impacts of five recent ENSO events on southern Africa, the associated circulation anomalies and the ability of an atmospheric general circulation model (UKMO HadAM3) to represent these impacts when forced by observed sea-surface temperature (SST). It is found that the model is most successful for the 1997/8 El Niño but does less well for the 1991/2 and 2002/3 El Niños and the 1995/6 and 1999/00 La Niña events. Diagnostics from the model and NCEP re-analyses suggest that modulations to the Angola low, an important centre of tropical convection over southern Africa during austral summer, are often important for influencing the rainfall impacts of ENSO over subtropical southern Africa. Since the model has difficulty in adequately representing this regional circulation feature and its variability, it has problems in capturing ENSO rainfall impacts over southern Africa. During 1997/8, modulations to the Angola low were weak and Indian Ocean SST forcing strong and the model is relatively successful. The implications of these results for dynamical model based seasonal forecasting of the region are discussed.Current affiliation: CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India.  相似文献   

3.
4.
利用1979—2012年Hadley中心海表温度、中国2 474个台站逐日降水和NCEP/NCAR全球再分析资料,分析了不同类型ENSO事件秋冬季和次年春季中国南方地区10~30 d降水低频变率的变化特征。结果表明,中国南方地区10~30 d降水低频变率对不同类型ENSO事件的响应存在显著的季节差异。EP型El Ni1o的冬季和次年春季,低频降水变率显著增强; CP型El Ni1o秋冬季低频降水强度呈现相反的异常,秋季低频降水偏弱,而冬季则偏强; La Ni1a事件期间中国南方低频降水变率的变化较小且不稳定。进一步分析发现,ENSO对南方地区10~30 d低频降水变率的影响与西北太平洋地区季节平均大气环流背景场对ENSO的响应密切相关。相比正常年份,EP型El Ni1o冬春季菲律宾反气旋性异常环流的强度较强且范围较大,其西侧的异常西南风向中国南方地区输送了大量水汽,从而有利于低频降水的增强; CP型El Ni1o年秋季西北太平洋表现为气旋性环流异常,抑制了热带水汽向东亚大陆的输送,而冬季却产生了与EP型El Ni1o年类似的异常反气旋环流,只是强度有所减弱,因此中国南方地区低频降水强度在秋冬季呈相反异常。La Ni1a年菲律宾附近虽然存在气旋性环流异常,但强度较弱,因而我国南方地区低频降水变率的响应也较弱。  相似文献   

5.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

6.
Strong cases of the tropical temperate troughs (TTT) that are responsible for the most of the summer rainfall over subtropical southern Africa are analyzed. An index for identifying the TTT is introduced for the first time using anomalies of outgoing longwave radiation (OLR) and the wind. The TTT is associated with a ridge-trough-ridge wave-like structure in the lower troposphere over southern Africa and the adjoining Indian Ocean. Therefore, the index considers physical processes that occur over southern Africa, adjoining the Atlantic and Indian Oceans to depict the variability of the TTT events. Unusually strong TTT events are identified when the standard deviations of the TTT indices defined by the OLR and wind anomalies in the selected regions are above 1.5 and 0.5 respectively. After applying this criterion and filtering out consecutive events, 55 TTT events are identified during the study period of December–January–February seasons from 1980–1981 to 2009–2010. From the composite analyses of those 55 events, it is found that the TTTs evolve with suppressed (enhanced) convection over the southwest Indian Ocean adjacent to Madagascar (southern Africa). The suppressed convection is, in turn, found to be associated with the enhanced convection around Sumatra in the southeast tropical Indian Ocean. This may explain why more TTT events occur in La Niña years as compared to El Niño years. Time evolution of the canonical TTT event shows that it starts 3 days prior to the mature phase of the event, suggesting possible predictability. After reaching a matured state, the system moves east toward the Indian Ocean and decays within the subsequent couple of days. In addition, the intertropical convergence zone (ITCZ) structure changes over Southern Africa/Madagascar during the TTT event and remains similar to climatology over other regions. The results indicate that the continental part of the ITCZ intensifies prior to the TTT event and then spreads southward following the mid-latitude influence during and after the event.  相似文献   

7.
A regional tree ring-width index chronology prepared from various tree core samples of the western Himalaya has been analyzed in relation to climate fluctuations. The correlation analysis of tree ring chronology shows significant positive correlations with regional rainfall and standardized precipitation evapotranspiration index (SPEI) and negative correlations with temperature and vapor pressure (VP) during the spring season. The correlation coefficients (CCs) of tree ring-width index chronology with rainfall, temperature, SPEI, and VP during 1901–1990 are 0.50, −0.49, 0.65, and −0.51, respectively. All CCs are significant at 0.1% level. The highly significant CCs between tree ring-width index chronology and SPEI indicate that tree growth over the western Himalaya is more sensitive to soil moisture availability than rainfall, whereas the rising VP is found to have a significant moisture stress condition to tree growth by accelerating the evapotranspiration, which is not conducive for the development of tree growth in the region. So, based on the strong association between tree ring-width index chronology and SPEI; the reconstructions of SPEI and VP are developed back to AD 1861, that show the long period of dryness during 1936–1963.  相似文献   

8.
9.
In this study, the projection of future drought conditions is estimated over South Korea based on the latest and most advanced sets of regional climate model simulations under the Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios, within the context of the national downscaling project of the Republic of Korea. The five Regional Climate Models (RCMs) are used to produce climate-change simulations around the Korean Peninsula and to estimate the uncertainty associated with these simulations. The horizontal resolution of each RCM is 12.5 km and model simulations are available for historical (1981-2010) and future (2021-2100) periods under forcing from the RCP4.5 and RCP8.5 scenarios. To assess the characteristics of drought on multiple time scales in the future, we use Standardized Precipitation Indices for 1-month (SPI- 1), 6-month (SPI-6) and 12-month (SPI-12). The number of drought months in the future is shown to be characterized by strong variability, with both increasing and decreasing trends among the scenarios. In particular, the number of drought months over South Korea is projected to increase (decrease) for the period 2041-2070 in the RCP8.5 (RCP4.5) scenario and increase (decrease) for the period 2071-2100 in the RCP4.5 (RCP8.5) scenario. In addition, the percentage area under any drought condition is overall projected to gradually decrease over South Korea during the entire future period, with the exception of SPI-1 in the RCP4.5 scenario. Particularly, the drought areas for SPI-1 in the RCP4.5 scenario show weakly positive long-term trend. Otherwise, future changes in drought areas for SPI-6 and SPI-12 have a marked downward trend under the two RCP scenarios.  相似文献   

10.
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.  相似文献   

11.
基于1921—2016年天津地区降水、气温观测数据,对全球降水气候中心降水(GPCC-P)、东英吉利大学气候研究中心气温(CRU-T)进行适用性评估后发现GPCC-P和CRU-T均能较好地反映天津地区降水和气温的变化。在此基础上,进一步利用GPCC-P、CRU-T计算的标准化降水蒸散指数(SPEI)分析天津地区近百年干旱时空演变特征并判断其未来变化趋势。结果表明:(1)天津干旱主要发生于1940年代初期、1990年代末和2000年代初期,四季均以轻旱和中旱为主,干旱高频季节由秋、冬季逐渐转为春、夏季。(2)天津全区SPEI气候趋势在6个时期除秋季整体呈“升、降、升”分布特征外,春、夏、冬季均表现为“升、降”的分布特征,且夏季下降趋势最为显著,1961—2010年宁河每10 a下降0.30。(3)1921—1970、1931—1980、1941—1990年天津春、冬季湿润化趋势由降水主导,而夏、秋季则由气温和降水协同影响;1951—2000、1961—2010、1971—2016年春季干旱趋势主要受气温影响,夏、冬季则为气温和降水协同影响,随着全球变暖,气温升高对干旱的影响逐渐增强。(4...  相似文献   

12.
利用信噪方差比探讨了山东省月尺度降水可预报性,发现2~3月、9~10月不可预报,其它月份可预报性强。一般大气环流系统冬夏转换季节可预报性差。与13个代表站预报评分进行了比较,发现可预报性指数越高,则实际预报评分也相对较高,两者有较好的对应关系。  相似文献   

13.
The summer monsoon onset over southern Vietnam is determined through a new criterion based on both in situ daily rainfall at six selected stations provided by the Institute of Meteorology and Hydrology, Vietnam, and the zonal component of the wind at 1,000 hPa from the National Center for Environmental Prediction/Department of Energy Reanalysis 2. Over the period 1979–2004, the summer monsoon onset mean date is on 12 May, with a standard deviation of 11.6 days. The temporal and spatial structures of the atmospheric conditions prevailing during the onset period are detailed. Clear changes are seen in the zonal wind (strengthened over the Bay of Bengal and changed from negative to positive over South Vietnam) and in convection (deeper), in association with an intensification of the meridional gradients of sea level pressure at 1,000 hPa and of moist static energy at 2 m over Southeast Asia. The predictability of onset dates is then assessed. Cross-validated hindcasts based upon four predictors linked to robust signals in the atmospheric dynamics are then provided. They are highly significant when compared to observations (56% of common variance). Basically, late (early) onsets are preceded in March–April by higher (lower) sea level pressure over the East China Sea, stronger (weaker) southeasterly winds over southern Vietnam, decreasing (increasing) deep convection over the Bay of Bengal, and the reverse situation over Indonesia (120–140°E, 0–10°S).  相似文献   

14.
对东亚气候年际变率的研究仍存在许多值得探寻之处。已有研究表明,产生于ENSO年际变率和暖池年循环相互作用的C-mode与东亚气候异常变化的关系密切,特别是自20世纪90年代以来,ENSO对中国南方降水的贡献减弱,而C-mode的影响则在2000年后凸显出来。本文利用600年长时间模拟结果评估了气候模式ECHAM5/MPI-OM对C-mode及其对华南季节降水影响的模拟。结果表明该模式能够再现C-mode的时空特征以及热带海气对其的非对称响应。同时也能较好地抓住C-mode影响华南冬春季降水异常的时空结构。这将有助于进一步利用ECHAM5/MPI-OM来模拟和预测与C-mode相关的华南季节降水异常变化。  相似文献   

15.
We perform a systematic study of the predictability of surface air temperature and precipitation in Southeastern South America (SESA) using ensembles of AGCM simulations, focusing on the role of the South Atlantic and its interaction with the El Niño-Southern Oscillation (ENSO). It is found that the interannual predictability of climate over SESA is strongly tied to ENSO showing high predictability during the seasons and periods when there is ENSO influence. The most robust ENSO signal during the whole period of study (1949–2006) is during spring when warm events tend to increase the precipitation over Southeastern South America. Moreover, the predictability shows large inter-decadal changes: for the period 1949–1977, the surface temperature shows high predictability during late fall and early winter. On the other hand, for the period 1978–2006, the temperature shows (low) predictability only during winter, while the precipitation shows not only high predictability in spring but also in fall. Furthermore, it is found that the Atlantic does not directly affect the climate over SESA. However, the experiments where air–sea coupling is allowed in the south Atlantic suggest that this ocean can act as a moderator of the ENSO influence. During warm ENSO events the ocean off Brazil and Uruguay tends to warm up through changes in the atmospheric heat fluxes, altering the atmospheric anomalies and the predictability of climate over SESA. The main effect of the air–sea coupling is to strengthen the surface temperature anomalies over SESA; changes in precipitation are more subtle. We further found that the thermodynamic coupling can increase or decrease the predictability. For example, the air–sea coupling significantly increases the skill of the model in simulating the surface air temperature anomalies for most seasons during period 1949–1977, but tends to decrease the skill in late fall during period 1978–2006. This decrease in skill during late fall in 1978–2006 is found to be due to a wrong simulation of the remote ENSO signal that is further intensified by the local air–sea coupling in the south Atlantic. Thus, our results suggest that climate models used for seasonal prediction should simulate correctly not only the remote ENSO signal, but also the local air–sea thermodynamic coupling.  相似文献   

16.
17.
In this article, we examine climate model estimations for the future climate over central Belgium. Our analysis is focused mainly on two variables: potential evapotranspiration (PET) and precipitation. PET is calculated using the Penman equation with parameters appropriately calibrated for Belgium, based on RCM data from the European project PRUDENCE database. Next, we proceed into estimating the model capacity to reproduce the reference climate for PET and precipitation. The same analysis for precipitation is also performed based on GCM data from the IPCC AR4 database. Then, the climate change signal is evaluated over central Belgium using RCM and GCM simulations based on several SRES scenarios. The RCM simulations show a clear shift in the precipitation pattern with an increase during winter and a decrease during summer. However, the inclusion of another set of SRES scenarios from the GCM simulations leads to a less clear climate change signal.  相似文献   

18.
19.
20.
延伸期预报是无缝隙预测系统中的薄弱环节,如何提高灾害天气过程的延伸期预报技巧是国际热点及前沿问题。本研究基于2005年12月—2014年8月的观测/再分析资料,通过奇异值分解方法,揭示了与中国南方低频降水变化高度耦合的热带对流和中纬度波列信号。利用中国气象局参加国际次季节至季节预报计划模式(BCC-CPS-S2Sv2模式,简称BCC S2S模式)的回报数据,对中国南方低频降水异常场进行统计降尺度,构建了一套动力-统计相结合的延伸期降水预测模型。独立预测时段(2014年12月—2019年8月)的结果表明,BCC S2S模式可以提前10—15 d预报中国南方大部分区域的异常降水;提前15—20 d以上预报时,动力-统计结合预报模型对冬季(夏季)华南沿海地区(长江以北地区)的降水时间演变、降水空间分布及极端强降水事件的预报技巧均优于BCC S2S模式。文中提出的思路和方法可广泛应用于其他区域气象要素和极端天气事件的延伸期预报。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号