首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations by several instruments onboard the Cassini spacecraft revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units in the ionosphere of Titan. These very large molecules are in fact aerosols. The goal of this paper is to compute the concentrations of the charged aerosols in the upper atmosphere (950-1200 km) of Titan. The charging of these aerosols has been studied using the charge balance equations, where positive ions, negative ions, electrons, neutral and charged aerosols are included. Number concentrations of charged aerosols are compared with those observed by the Cassini instruments. The present work estimates the aerosol mass density as 1-10 kg/m3, which is within the predicted range. The results show that the aerosols must be smaller than 10 nm in order to have reasonable agreement with observations by the Cassini Plasma Spectrometer.  相似文献   

2.
W.J. Borucki  R.C. Whitten  E. Barth 《Icarus》2006,181(2):527-544
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes between 0 and 400 km. Ionization of methane and nitrogen due to galactic cosmic rays (GCR) is important at night where these ions are converted to ion clusters such as CH+5CH4, C7H+7, C4H+7, and H4C7N+. The ubiquitous aerosols observed also play an important role in determining the charge distribution in the atmosphere. Because polycyclic aromatic hydrocarbons (PAHs) are expected in Titan's atmosphere and have been observed in the laboratory and found to be electrophilic, we consider the formation of negative ions. During the night, the very smallest molecular complexes accept free electrons to form negative ions. This results in a large reduction of the electron abundance both in the region between 150 and 350 km over that predicted when such aerosols are not considered. During the day time, ionization by photoemission from aerosols irradiated by solar ultraviolet (UV) radiation overwhelms the GCR-produced ionization. The presence of hydrocarbon and nitrile minor constituents substantially reduces the UV flux in the wavelength band from the cutoff of CH4 at 155 to 200 nm. These aerosols have such a low ionization potential that the bulk of the solar radiation at longer wavelengths is energetic enough to produce a photoionization rate sufficient to create an ionosphere even without galactic cosmic ray (GCR) bombardment. At altitudes below 60 km, the electron and positive ion abundances are influenced by the three-body recombination of ions and electrons. The addition of this reaction significantly reduces the predicted electron abundance over that previously predicted. Our calculations for the dayside show that the peaks of the charge distributions move to larger values as the altitude increases. This variation is the result of the increased UV flux present at the highest altitudes. Clearly, the situation is quite different than that for the night where the peak of the distribution for a particular size is nearly constant with altitude when negative ions are not present. The presence of very small aerosol particles (embryos) may cause the peak of the distribution to decrease from about 8 negative charges to as little as one negative charge or even zero charge. This dependence on altitude will require models of the aerosol formation to change their algorithms to better represent the effect of charged aerosols as a function of altitude. In particular, the charge state will be much higher than previously predicted and it will not be constant with altitude during the day time. Charging of aerosol particles, whether on the dayside or nightside, has a major influence on both the electron abundance and electrical conductivity. The predicted conductivities are within the measurement range of the HASI PWA instrument over most but not all, of the altitude range sampled.  相似文献   

3.
The main goals of experimental simulation in the laboratory of a planetary atmosphere are to feed the theoretical models, and to help the treatment of observations. This type of simulation permits the direct study of objects that space missions can't study or have not studied yet, through the production of laboratory analogues of gaseous or solid phases. But the representativity of these laboratory analogues is of crucial importance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.  相似文献   

5.
6.
M.G. Tomasko  L.R. Doose  L.E. Dafoe  C. See 《Icarus》2009,204(1):271-283
The Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe into the atmosphere of Titan yielded information on the size, shape, optical properties, and vertical distribution of haze aerosols in the atmosphere of Titan [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., 2008. Planet. Space Sci. 56, 669-707] from photometric and spectroscopic measurements of sunlight in Titan’s atmosphere. This instrument also made measurements of the degree of linear polarization of sunlight in two spectral bands centered at 491 and 934 nm. Here we present the calibration and reduction of the polarization measurements and compare the polarization observations to models using fractal aggregate particles which have different sizes for the small dimension (monomer size) of which the aggregates are composed. We find that the Titan aerosols produce very large polarizations perpendicular to the scattering plane for scattering near 90° scattering angle. The size of the monomers is tightly constrained by the measurements to a radius of 0.04 ± 0.01 μm at altitudes from 150 km to the surface. The decrease in polarization with decreasing altitude observed in red and blue light is as expected by increasing dilution due to multiple scattering at decreasing altitudes. There is no indication of particles that produce small amounts of linear polarization at low altitudes.  相似文献   

7.
In the frame of fractal modeling of tholin aggregates we made a systematic analysis of their optical properties. Ballistic particle-cluster aggregation (BPCA) and diffusion-limited aggregation (DLA) of spherical primary particles (monomers) identical in material composition were considered. Aggregates composed of identical particles (monodisperse cluster), as well as of size-distributed particles (polydisperse cluster), were simulated. To calculate the light-scattering models, the code based on the superposition T-matrix method is used. Orientationally averaged properties of light scattering by model particles were extracted, and the normalized phase function and the degree of linear polarization were calculated as functions of scattering angle. We concluded that: (a) aggregation mechanism as well as specific internal structure of the clusters play only a minor role, and for the future it is not necessary to investigate aggregates of different types; (b) the intensity is very sensitive both to the size parameter of forming particles x and to the size parameter of the aggregates X; (c) characterization of the aggregates by the number of monomers is insufficient to retrieve physical properties of aggregates from optical measurement; and (d) it is very desirable to include into the analysis polarization data calculated for the different clusters.  相似文献   

8.
《Icarus》1987,72(3):604-622
The electrical conductivity and electrical charge on the aerosols in atmosphere of Titan are computed for altitudes from 0 to 400 km. Ionization due to both galactic cosmic rays and electron precipitation from the Saturnian magnetosphere is considered. This ionization results in free electrons and the primary ions N2+ and N+ which are then rapidly converted into secondary ions such as H2CN+ and NH4+ which in turn form ion clusters such as H2CN+(HCN)n and NH4+(NH3)m. In contrast to the atmospheres of Venus and Earth, we find no species in the Titan atmosphere that lead to the formation of appreciable concentrations of negative ions. Consequently, the predicted conductivity is quite different in that a substantial concentration of electrons exists all the way to the surface of Titan. The ubiquitous aerosols observed in the Titan atmosphere also play an important role in determining the charge distribution in the atmosphere. At altitudes above 100 km and for aerosol concentrations above approximately 10/cc, the recombination of electrons and positive ions is controlled by the recombination on the surface of the aerosols rather than by the gas-kinetic recombination rate. For small aerosol concentrations, the ratio of the number of charges per particle to the radius of the particle is approximately 30, for radii in microns. This value is similar to that obtained by previous investigators for terrestrial noctilucent clouds. Because the aerosol particles are highly charged, coagulation is inhibited, particle sizes are smaller, and their settling rates are reduced. As a consequence, the optical depth of the atmosphere is much higher than it would be if the particles were uncharged.  相似文献   

9.
The descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe into the atmosphere of Titan measured the brightness of sunlight using a complement of spectrometers, photometers, and cameras that covered the spectral range from 350 to 1600 nm, looked both upward and downward, and made measurements at altitudes from 150 km to the surface. Measurements from the upward-looking visible and infrared spectrometers are described in Tomasko et al. [2008a. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this volume]. Here, we very briefly review the measurements by the violet photometers, the downward-looking visible and infrared spectrometers, and the upward-looking solar aureole (SA) camera. Taken together, the DISR measurements constrain the vertical distribution and wavelength dependence of opacity, single-scattering albedo, and phase function of the aerosols in Titan's atmosphere.Comparison of the inferred aerosol properties with computations of scattering from fractal aggregate particles indicates the size and shape of the aerosols. We find that the aggregates require monomers of radius 0.05 μm or smaller and that the number of monomers in the loose aggregates is roughly 3000 above 60 km. The single-scattering albedo of the aerosols above 140 km altitude is similar to that predicted for some tholins measured in laboratory experiments, although we find that the single-scattering albedo of the aerosols increases with depth into the atmosphere between 140 and 80 km altitude, possibly due to condensation of other gases on the haze particles. The number density of aerosols is about 5/cm3 at 80 km altitude, and decreases with a scale height of 65 km to higher altitudes. The aerosol opacity above 80 km varies as the wavelength to the −2.34 power between 350 and 1600 nm.Between 80 and 30 km the cumulative aerosol opacity increases linearly with increasing depth in the atmosphere. The total aerosol opacity in this altitude range varies as the wavelength to the −1.41 power. The single-scattering phase function of the aerosols in this region is also consistent with the fractal particles found above 60 km.In the lower 30 km of the atmosphere, the wavelength dependence of the aerosol opacity varies as the wavelength to the −0.97 power, much less than at higher altitudes. This suggests that the aerosols here grow to still larger sizes, possibly by incorporation of methane into the aerosols. Here the cumulative opacity also increases linearly with depth, but at some wavelengths the rate is slightly different than above 30 km altitude.For purely fractal particles in the lowest few km, the intensity looking upward opposite to the azimuth of the sun decreases with increasing zenith angle faster than the observations in red light if the single-scattering albedo is assumed constant with altitude at these low altitudes. This discrepancy can be decreased if the single-scattering albedo decreases with altitude in this region. A possible explanation is that the brightest aerosols near 30 km altitude contain significant amounts of methane, and that the decreasing albedo at lower altitudes may reflect the evaporation of some of the methane as the aerosols fall into dryer layers of the atmosphere. An alternative explanation is that there may be spherical particles in the bottom few kilometers of the atmosphere.  相似文献   

10.
The early evolution of Titan's atmosphere is expected to produce enrichment in the heavy isotopomers of CO, 13CO and C18O, relative to 12C16O. However, the original isotopic signatures may be altered by photochemical reactions. This paper explains why there is no isotopic enrichment in C in Titan's atmosphere, despite significant enrichment of heavy H, N, and O isotopes. We show that there is a rapid exchange of C atoms between the CH4 and CO reservoirs, mediated by the reaction 1CH2+*CO→1*CH2+CO, where *C is 13C. Based on recent laboratory measurements, we estimate the rate coefficient for this reaction to be 3.2×10−12 cm3 s−1 at the temperature appropriate for the upper atmosphere of Titan. We investigate the isotopic dilution of CO using the Caltech/JPL one-dimensional photochemical model of Titan. Our model suggests that the time constant for isotopic exchange through the above reaction is about 800 Myr, which is significantly shorter than the age of Titan, and therefore any original isotopic enhancement of 13C in CO may have been diluted by the exchange process. In addition, a plausible model for the evolution history of CO on Titan after the initial escape is proposed.  相似文献   

11.
A procedure is shown for extracting weak resonances from the responses of electromagnetic systems excited by electric discharges. The procedure, based on analysis of the late-time system response, is first checked using an analytical function and later with the data for the electric field generated by the computational simulation of Titan's atmosphere using the Transmission Line Matrix (TLM) method. Finally, the low frequency spectrum of the natural electric field in Titan's atmosphere sent by the mutual impedance sensor (MIP) included in the Huygens probe is analyzed employing this technique. The MIP sensor was initially designed to measure the horizontal component of the electric field during a quiet descent. Fortunately, the swinging that occurred during the descent allowed the MIP to measure the radial component of the electric field mixed with the horizontal one. Application of the late-time analysis technique shown in this paper confirms the signature of lightning reported by preliminary data observations, bringing out the expected eigenfrequencies of the Titan-ionosphere electromagnetic cavity, known as Schumann resonances. These resonances are the resonant frequencies of the lower TMr (transverse magnetic to r) modes, which are quasi-transverse electromagnetic modes because they present vertical or radial components of the electric field two orders of magnitude higher than the associated horizontal, azimuthal and zenithal, components. The sequence of Schumann resonances is unique for each celestial body with an ionosphere, since these resonances are fully determined by the dimensions of the planet or satellite and the corresponding atmospheric conductivity profile. Detecting these frequencies in an atmosphere is clear proof of electrical activity, since it implies the existence of an electromagnetic-energy source, which is essential to create and maintain them.  相似文献   

12.
We identify mechanisms controlling the distribution of methane convection and large-scale circulation in a simplified, axisymmetric model atmosphere of Titan forced by gray radiation and moist (methane) convection. The large-scale overturning circulation, or Hadley cell, is global in latitudinal extent and provides fundamental control of precipitation and tropospheric winds. The precipitating, large-scale updraft regularly oscillates in latitude with seasons. The distance of greatest poleward excursion of the Hadley cell updraft is set by the mass of the convective layer of the atmosphere; convection efficiently communicates seasonal warming of the surface through the cold and dense lower atmosphere, increasing the heat capacity of the system. The presence of deep, precipitating convection introduces three effects relative to the case with no methane latent heating: (1) convection is narrowed and enhanced in the large-scale updraft of the Hadley cell; (2) the latitudinal amplitude of Hadley cell updraft oscillations is decreased; and (3) a time lag is introduced. These effects are observable in the location and timing of convective methane clouds in Titan’s atmosphere as a function of season. A comparison of simulations over a range of convective regimes with available observations suggest methane thermodynamic-dynamic feedback is important in the Titan climate.  相似文献   

13.
Future planetary exploration of Titan will require higher degrees of on-board automation, including autonomous determination of sites where the probability of significant scientific findings is the highest. In this paper, a novel Artificial Intelligence (AI) method for the identification and interpretation of sites that yield the highest potential of cryovolcanic activity is presented. We introduce the theory of fuzzy cognitive maps (FCM) as a tool for the analysis of remotely collected data in planetary exploration. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction of planetary scientists and AI experts. As an application example, we show how FCM can be employed to solve the challenging problem of recognizing cryovolcanism from Synthetic Aperture Radar (SAR) Cassini data. The fuzzy cognitive map is constructed using what is currently known about cryovolcanism on Titan and relies on geological mapping performed by planetary scientists to interpret different locales as cryovolcanic in nature. The system is not conceived to replace the human scientific interpretation, but to enhance the scientists’ ability to deal with large amounts of data, and it is a first step in designing AI systems that will be able, in the future, to autonomously make decisions in situations where human analysis and interpretation is not readily available or could not be sufficiently timely. The proposed FCM is tested on Cassini radar data to show the effectiveness of the system in reaching conclusions put forward by human experts and published in the literature. Four tests are performed using the Ta SAR image (October 2004 fly-by). Two regions (i.e. Ganesa Macula and the lobate high backscattering region East of Ganesa) are interpreted by the designed FCM as exhibiting cryovolcanism in agreement with the initial interpretation of the regions by Stofan et al. (2006). Importantly, the proposed FCM is shown to be flexible and adaptive as new data and knowledge are acquired during the course of exploration. Subsequently, the FCM has been modified to include topographic information derived from SAR stereo data. With this additional information, the map concludes that Ganesa Macula is not a cryovolcanic region. In conclusion, the FCM methodology is shown to be a critical and powerful component of future autonomous robotic spacecraft (e.g., orbiter(s), balloon(s), surface/lake lander(s), rover(s)) that will be deployed for the exploration of Titan.  相似文献   

14.
The effect of the dense atmosphere of Titan on the tidal variations of the external gravitational potential of degree two is quantified. The atmospheric tides perturb the external gravitational potential of Titan in two ways. First, the atmosphere itself contributes directly to the external gravitational potential with a period of 15.945 days. Second, the variable loading of the atmosphere induces mass redistribution within Titan, which also changes the external gravitational potential. It is shown that the relative atmospheric contributions to the tides are most likely less than 2% and vanish almost completely for the most plausible models with a subsurface ocean. This suggest that atmospheric tidal perturbations will contribute only negligibly to Cassini measurements of Titan's gravitational field so that the tidal Love numbers derived from these observations can be directly interpreted in terms of the satellite's interior.  相似文献   

15.
Simulations of Titan's atmospheric transmission and surface reflectivity have been developed in order to estimate how Titan's atmosphere and surface properties could affect performances of the Cassini radar experiment. In this paper we present a selection of models for Titan's haze, vertical rain distribution, and surface composition implemented in our simulations. We collected dielectric constant values for the Cassini radar wavelength (∼2.2 cm) for materials of interest for Titan: liquid methane, liquid mixture of methane-ethane, water ice, and light hydrocarbon ices. Due to the lack of permittivity values for Titan's haze particles in the microwave range, we performed dielectric constant (εr) measurements around 2.2 cm on tholins synthesized in laboratory. We obtained a real part of εr in the range of 2-2.5 and a loss tangent between 10−3 and 5×10−2. By combining aerosol distribution models (with hypothetical condensation at low altitudes) to surface models, we find the following results: (1) Aerosol-only atmospheres should cause no loss and are essentially transparent for Cassini radar, as expected by former analysis. (2) However, if clouds are present, some atmospheric models generate significant attenuation that can reach −50 dB, well below the sensitivity threshold of the receiver. In such cases, a 13.78 GHz radar would not be able to measure echoes coming from the surface. We thus warn about possible risks of misinterpretation if a “wet atmosphere” is not taken into account. (3) Rough surface scattering leads to a typical response of ∼−17 dB. These results will have important implications on future Cassini radar data analysis.  相似文献   

16.
We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119–147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 μm. For CH3D, the prominent Q branch of the ν2 fundamental band of CH3D near 4.55 μm is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32±15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is 2.9±1.5×1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (0.5–1.0 Gyr), we find a mean CO atmospheric production rate of 6±3×105 kg yr−1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779–784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8±0.9×10−4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3×10−13 gm cm−2 s−1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer–Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is 0.02 km3 yr−1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan.  相似文献   

17.
Planetary atmospheres are complex dynamical systems whose structure, composition, and dynamics intimately affect the propagation of sound. Thus, acoustic waves, being coupled directly to the medium, can effectively probe planetary environments. Here we show how the acoustic absorption and speed of sound in the atmospheres of Venus, Mars, Titan, and Earth (as predicted by a recent molecular acoustics model) mirror the different environments. Starting at the surface, where the sound speed ranges from ∼200 m/s for Titan to ∼410 m/s for Venus, the vertical sound speed profiles reveal differences in the atmospheres' thermal layering and composition. The absorption profiles are relatively smooth for Mars, Titan, and Earth while Venus stands out with a noticeable attenuation dip occurring between 40 and 100 km. We also simulate a descent module sampling the sound field produced by a low-frequency “event” near the surface noting the occurrence of acoustic quiet zones.  相似文献   

18.
We report the detection of H13CN and HC15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/13C and 14N/15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm−1 resolution. The spectral range 1210-1310 cm−1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H12C14N, H13CN and HC15N from their bands at 713, 706 and 711 cm−1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find at 15° S, and at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane (82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/15N isotopic ratio is found equal to at 15° S and at 83° N. Combining the two values yields 14N/15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/14N ratio found in HCN is ∼3 times higher than in N2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], which implies a large fractionation process in the HCN photochemistry.  相似文献   

19.
The permittivity, waves and altimetry (PWA) instrument was designed for the investigation of the electric properties and other related physical characteristics of the atmosphere of Titan, from an altitude around 140 km down to the surface. PWA carried sensors to measure the atmospheric conductivity, and record electromagnetic and acoustic waves up to frequencies of 11.5 and 6.7 kHz, respectively. PWA also measured the relief roughness during the descent and the permittivity of the surface after touchdown. The measurements and the results of the preliminary analysis are presented. An ionized layer is detected at altitudes above 50 km, using two independent techniques, and the presence of free electrons in the upper atmosphere is confirmed. An electric signal at around 36 Hz is observed throughout the descent, but it is not yet confirmed that this emission is unambiguously related to a resonance of the ionospheric cavity. The relative dielectric constant of Titan's surface material is nearly 2 and the electric conductivity 4×10−10 S m−1. The electric properties of the surface seem to evolve after touch-down, possibly due to a local warming of the landing site by the Huygens Probe body.  相似文献   

20.
Many atmospheric measurement systems, such as the sounding instruments on Voyager, gather atmospheric information in the form of temperature versus pressure level. In these terms, there is considerable consistency among the mean atmospheric profiles of the outer planets Jupiter through Neptune, including Titan. On a given planet or on Titan, the range of variability of temperature versus pressure level due to seasonal, latitudinal, and diurnal variations is also not large. However, many engineering needs for atmospheric models relate not to temperature versus pressure level but atmospheric density versus geometric altitude. This need is especially true for design and analysis of aerocapture systems. Drag force available for aerocapture is directly proportional to atmospheric density. Available aerocapture “corridor width” (allowable range of atmospheric entry angle) also depends on height rate of change of atmospheric density, as characterized by density scale height. Characteristics of hydrostatics and the gas law equation mean that relatively small systematic differences in temperature versus pressure profiles can integrate at high altitudes to very large differences in density versus altitude profiles. Thus, a given periapsis density required to accomplish successful aerocapture can occur at substantially different altitudes (∼150-300 km) on the various outer planets, and significantly different density scale heights (∼20-50 km) can occur at these periapsis altitudes. This paper will illustrate these effects and discuss implications for improvements in atmospheric measurements to yield significant impact on design of aerocapture systems for future missions to Titan and the outer planets. Relatively small-scale atmospheric perturbations, such as gravity waves, tides, and other atmospheric variations can also have significant effect on design details for aerocapture guidance and control systems. This paper will discuss benefits that would result from improved understanding of Titan and outer planetary atmospheric perturbation characteristics. Details of recent engineering-level atmospheric models for Titan and Neptune will be presented, and effects of present and future levels of atmospheric uncertainty and variability characteristics will be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号