首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自1992年4月12日至12月30日对中山站附近内拉峡湾冰下水柱中浮游植物生物量以及环境因子的季节变化进行了测定。水中叶绿素a含量在0.03-21.40mg/m3之间波动,在覆冰期间,生物量基本上随深度的增加而下降;5-9月份各层次的生物量普遍低于0.5mg/m3,8-9月份低于0.1mg/m3。各层次中以水表含量的季节变化最为明显,成冰后在9月份形成低谷,于12月中旬紧接着冰底水华的消失而形成单一峰值。生物量中微型浮游植物(<20μm)的比重在4-9月份的多数层次占有一半以上,10月份后随着生物量的上升而下降,在水华期水表的比重最低,仅占总量的3.2%。其柱总生物量基本上与冰中生物量处于同一数量级,在冰藻水华期其量值甚至低于冰中生物量。营养盐(μmol/L)的波动范围为PO4-P:0.32-0.79,SiO3-Si:26.47-69.92,NO3-N:1.41-31.75,尽管水华期水表营养盐含量降至观测期间的最低点,但仍能满足冰下浮游植物的生长所需。光辐照度由于在冰水界面的量值仅为冰表入射光的不足5.3%至低于1%,成为水中产量最为可能的限制因子。  相似文献   

2.
《Polar Science》2014,8(4):385-396
The photosynthetic characteristics of sinking a microalgal community were studied to compare with the ice algal community in the sea ice and the phytoplankton community in the water column under the sea ice at the beginning of the light season in the first-year sea ice ecosystem on the Mackenzie Shelf, in the western Canadian Arctic. The phytoplankton community was collected using a water bottle, whereas the sinking algal community was collected using particle collectors, and the ice algal community was obtained by using an ice-core sampler from the bottom portion of ice core. Photosynthesis versus irradiance (P-E) incubation experiments were conducted on deck to obtain the initial slope (αB) and the maximum photosynthetic rate (PmB) of the three algal communities. The αB and the PmB of the light saturation curve, and chlorophyll a (Chl a) specific absorption coefficient (āph*) between the sinking microalgal community and the ice algal community were similar and were distinctly different from the phytoplankton community. The significant linear relationship between αB and PmB, which was obtained among the three groups, may suggest that a photo-acclimation strategy is common for all algal communities under the low light regime of the early season. Although the sinking algal community could be held for the entire duration of deployment at maximum, this community remained photosynthetically active once exposed to light. This response suggests that sinking algal communities can be the seed population, which results in a subsequent phytoplankton bloom under the sea ice or in a surface layer, as well as representing food for the higher trophic level consumers in the Arctic Ocean even before the receding of the sea ice.  相似文献   

3.
To investigate the fate of ice algae released from sea ice, we investigated the abundance, species composition, and sinking flux of diatoms in the water column under fast ice near Syowa Station, Antarctica during the summer of 2005/2006. The diatom assemblage in the water column consisted of chain-forming planktonic species, in contrast to the under-ice assemblage dominated by pennate species reported from this site in the past; this dissimilarity suggests the presence of an unconsolidated platelet ice layer under the congelation ice, within which planktonic species can bloom. Among the dominant diatoms, Porosira pseudodenticulata and Pseudo-nitzschia cf. turgiduloides were dominant in the water column, and their water column stocks were higher than their mass sedimentation. These species apparently maintain their populations in the surface layer, as their production remains in the water column. In contrast, Fragilariopsis kerguelensis and Thalassiosira australis were scarce in the water column but rich in the flux, indicating active sinking and export of their production to the benthic ecosystem. This distinction in buoyancy control and sinking characteristics of the dominant diatoms on release from the fast ice influences the diatom species composition and carbon flow under the ice.  相似文献   

4.
对1999年春季采集于北极拉普捷夫海东南部的冰藻和冰下浮游植物群落的种类组成进行了分析,并对丰度和生物量进行了统计和对比。藻种以硅藻占绝对优势,其中又以羽纹硅藻为主。优势种集中,主要包括海洋拟脆杆藻(Fragilariopsisoceanica)、圆柱拟脆杆藻(F.cylindrus)、寒冷菱形藻(Nitzschiafrigida)、普罗马勒菱形藻(N. promare)、带纹曲壳藻(Ach nanthestaeniata)、新寒冷菱形藻(Nitzschianeofrigida)、大洋舟形藻(Naviculapelagica)、范氏舟形藻(N. vanhoeffenii)、北极直链藻(Melosiraarctica)、北方舟形藻(N. septentrionalis)、新月细柱藻(Clindrothecaclosterium)和绿藻门的塔形藻(Pyramimonassp. )。微藻主要集中在冰底10cm,丰度为14. 6-1562. 2×104 cells·L-1,平均为639. 0×104 cells·L-1;生物量为7. 89-2093. 5μgC·L-1,平均为886. 9μgC·L-1,总体上比次冰底高1个数量级,比冰下表层水柱高2个数量级。冰底20cm冰柱的累计丰度和生物量平均分别为冰下20m水柱累计量的7. 7和12. 2倍,显示冰藻在春季海冰融化前在近岸生态系统中的重要作用。尽管各站位冰底和冰下表层水柱藻类群落的相似性普遍不高,但整个调查海域冰底和冰下水柱优势种极为相似,春季期间冰藻对冰下浮游植物群落的影响明显。由于  相似文献   

5.
Chironomid, pollen, and rhizopod records from a permafrost sequence at Bol’shoy Lyakhovsky Island (New Siberian Archipelago) document the development of a thermokarst palaeo-lake and environmental conditions in the region during the last Interglacial (MIS 5e). Open Poaceae and Artemisia associations dominated vegetation at the beginning of the interglacial period. Rare shrub thickets (Salix, Betula nana, Alnus fruticosa) grew in more protected and wetter places as well. Saalian ice wedges started to melt during this time, resulting in the formation of an initial thermokarst water body. The high percentage of semi-aquatic chironomids suggests that a peatland-pool initially existed at the site. A distinct decrease in semi-aquatic chironomid taxa and an increase in lacustrine ones point to a gradual pooling of water in the basin, which could in turn induce thermokarst and create a permanent pond during the subsequent period. The highest relative abundance of Chironomus and Procladius reflects unfrozen water remaining under the ice throughout the ice-covered period during the later stage of palaeo-lake development. The chironomid record points to three successive stages during the history of the lake: (1) a peatland pool; (2) a pond (i.e., shallower than the maximum ice-cover thickness); and (3) a shallow lake (i.e., deeper than the maximum ice-cover thickness). The trend of palaeo-lake development indicates that intensive thermokarst processes occurred in the region during the last Interglacial. Shrub tundra communities with Alnus fruticosa and Betula nana dominated the vegetation during the interglacial optimum. The climate was moister and warmer than present. The results of this study suggest that quantitative chironomid-based temperature reconstructions from Arctic thermokarst ponds/lakes may be problematic due to other key environmental factors, such as prolonged periods of winter anoxia and local hydrological/geomorphological processes, controlling the chironomid assemblages.  相似文献   

6.
Autotrophic and heterotrophic flagellates, microalgae and ciliates sampled at four stations in the White Sea in April 2002 were studied using epifluorescence microscopy. The concentrations of phototrophic 1.5 μm algae in the middle and lower part of the ice core were very high: up to 6.1 ± 108 cells I−1 and 194 μg C I−1. Heterotrophic algae made up the largest proportion of the nanoplankton (2-20 μm) and microplankton (20-200 μm) at depths 10-25 m below the ice. The proportion of ciliates ranged from about 0.01% to 18% at different stations and depths. Most of the ciliate biomass in the ice was made up of typical littoral zone species, whereas the water under the ice was dominated by phototrophic Myrionecta rubra . Ice algae, mainly flagellates in the upper ice layer and diatoms in the bottom ice layer, supported the proliferation of heterotrophs, algae and ciliates in early spring. Small heterotrophs and diatoms from the ice may provide food for early growth and development of pelagic copepods. Mass development of the ice algae in early spring appears typical for the seasonal ice of the White Sea. Ice algae differ in species composition from the spring pelagic community and develop independently in time and space from the spring phytoplankton bloom.  相似文献   

7.
The climatic variation of the Pleistocene acted on karst terrains to change the conditions of cave development. These changes were the result of three major effects: Ice Contact Effects, Ice Proximity Effects and Global Effects.

Ice Contact Effects involve ice directly, producing glacial quarrying, sediment redistribution, water budget alteration, isostatic rebound, temperature controlled weathering, geochemistry changes, and hydraulic conditions.

Ice Proximity Effects work at a distance from glacial ice, and include periglacial conditions, aggradation by outwash, loess deposition and disruption of master streams.

Global Effects work over all planet areas and involve custatic sea level change and variation in precipitation.  相似文献   

8.
本文依托2010夏季中国第四次北极科学考察,通过对高纬度极地冰下水和冰芯的营养盐的连续观测及表层水颗粒物的藻类色素分析,获取了夏季快速融冰下冰水界面营养盐和光合色素的分布信息。结果表明调查期间表层水磷酸盐和硅酸盐相对于无机氮更丰富(依据Redfield比值),表现为显著的氮限制。而冰芯无机氮浓度相对更高,融冰释放对水体无机氮有一定的补充。色素分析显示岩藻黄素(Fuco)和叶绿素a(Chl a)是水体颗粒物的主要光合色素。在8/15至8/18期间,叶绿素c(Chl c)、硅藻黄素(Diato)、硅甲藻黄素(Diadino)和岩藻黄素(Fuco)分别达到6,22,73和922μg/m3,体现了硅藻在群落中的优势地位。岩藻黄素(Fuco)的浓度在融冰快速期间有巨大的提升,主要来源于冰芯底部释放的衰老的冰生硅藻和浮游硅藻的生长。此外,青绿黄素(Prasino)和叶黄素(Lut)与岩藻黄素(Fuco)分布模式有明显的差异,暗示青绿藻和绿藻与硅藻对海冰融化的不同响应。  相似文献   

9.
We investigated the size fraction and pigment-derived class compositions of phytoplankton within the euphotic zone of the Antarctic marginal ice zone between 63.3°S and 66.5°S along the 140°E meridian on two consecutive cruises in the late austral summer and early austral autumn of 2003. We observed significant temporal and spatial variations in phytoplankton size and taxonomic composition, although chlorophyll a concentrations were generally below 1 μg l−1 during both periods. Microphytoplankton (>20 μm), mainly diatoms, were prominent in the euphotic zone in the southernmost area around 66.5°S during late summer. In the rest of the study area during both cruises, the phytoplankton community was dominated by pico- and nano-sized populations (<20 μm) throughout the euphotic zone. The small-size populations mostly consisted of diatoms and haptophytes, although chlorophytes were dominant in extremely cold water (−1.5°C) below the overlying warm water around 65.5°S during late summer. From late summer to early autumn, chlorophytes declined in abundance, probably due to increasing temperature within the euphotic zone (−1 to 0°C). These pico- and nano-phytoplankton-dominated populations were often accompanied by relatively high concentrations of ammonium, suggesting the active regeneration of nutrients within the small-size plankton community.  相似文献   

10.
Clara Deal 《极地研究》2008,19(2):218-229
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice.Here pelagic and sea ice algal ecosystems coexist and interact with each other.Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea.The biological model includes both pelagic and sea ice algal habitats with 10 compartments:three phytoplankton(pelagic diatom,flagellates and ice algae:D,F,and Ai),three zooplankton(copepods,large zooplankton,and micro-zooplankton :ZS,ZL,ZP),three nutrients(nitrate+nitrite,ammonium,silicon: NO_3,NH_4,Si) and detritus(Det).The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model.The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model.Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   

11.
在 CHINARE- 1 5考察期间对中山站及毗邻地区的湖泊和冰雪进行了采样。它们的CODMn指数与中国《地面水环境质量标准》相比 ,可分为三类 :一类水质所占比重最大 ,大约为56% ,二类和三类分别为 37%、7%。各类水体的 CODMn指数主要为自然源所贡献 ,人为污染不明显。湖水的 CODMn指数是生物生长状况、有机质含量、盐度和水体氧化还原程度的综合体现 ,新鲜降雪样的 CODMn指数指示了该地区的大气洁净度。  相似文献   

12.
To examine algae populations, three expeditions (in March 2001, April 2002 and February 2003) were conducted in the Guba Chupa (Chupa Estuary; north-western White Sea), and one cruise was carried out in the open part of the White Sea in April 2003 and in the northern part of the Barents Sea in July 2001. Sea ice algae and phytoplankton composition and abundance and the content of sediment traps under the land-fast ice in the White Sea and annual and multi-year pack ice in the Barents Sea were investigated. The community in land-fast sea ice was dominated by pennate diatoms and its composition was more closely related to that of the underlying sediments than was the community of the pack ice, which was dominated by flagellates, dinoflagellates and centric diatoms. Algae were far more abundant in land-fast ice: motile benthic and ice-benthic species found favourable conditions in the ice. The pack ice community was more closely related to that of the surrounding water. It originated from plankton incorporation during sea ice formation and during seawater flood events. An additional source for ice colonization may be multi-year ice. Algae may be released from the ice during brine drainage or sea ice melting. Many sea ice algae developed spores before the ice melt. These algae were observed in the above-bottom sediment traps all year around. Three possible fates of ice algae can be distinguished: 1) suspension in the water column, 2) sinking to the bottom and 3) ingestion by herbivores in the ice, at the ice-water interface or in the water column.  相似文献   

13.
<正> Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

14.
《Polar Science》2014,8(4):370-384
An anomalous phytoplankton bloom was recorded in the Indian Ocean sector of the Antarctic Zone (AZ) of the Southern Ocean (SO) during the austral summer, 2011. Possible mechanisms for the triggering of such a large bloom were analyzed with the help of in situ and satellite data. The bloom, which formed in January 2011, intensified during February and weakened by March. High surface chlorophyll (Chl) concentrations (0.76 mg m−3) were observed in the area of the bloom (60°S, 47°E) with a Deep Chlorophyll Maximum (DCM) of 1.15 mg m−3 at a depth of 40–60 m. During 2011, both the concentration and spatial extent of sea ice were high on the western side of the bloom, between 0°E and 40°E, and enhanced freshwater influx was observed in the study area as a result of melting ice. A positive Southern Annular Mode (SAM) (with a resultant northward horizontal advection) and an intense La Niña during 2010–2011 are possible reasons for the high sea-ice concentrations. The enhanced Chl a observed in the study region, which can be attributed to the phytoplankton bloom, likely resulted from the influx of nutrient-laden freshwater derived from melting sea ice.  相似文献   

15.
Abstract|Gjessing,

Y. T. 1968. On the Relation between the Meteorological Conditions and the Freezing of Lusterfjord. Norsk geogr. Tidsskr. 22, 200–208,

In most cases Lusterfjord freezes over in winter immediately after a period of mild weather conditions with some precipitation. It is sufficient to have temperatures just below 0°C for a relatively short period of time in order for ice to form. However, during extreme cold weather conditions where the temperatures are under -15°C for a lengthy period of time, the fjord is often free from ice formation.

In order for ice to form, there must be a stable gradient in the uppermost centimetres of the water masses. This stable cross-section is a result of a strong gradient of salinity and is formed by a supply of fresh water in the form of precipitation. Such a layer will easily be decomposed by a mechanical turbulence (wind).  相似文献   

16.
Downward material fluxes under seasonal sea ice were measured using a time-series sediment trap installed at an offshore site in the Okhotsk Sea north of Hokkaido, Japan, from 13 January to 23 March 2005. The maximum fluxes of lithogenic material (753 mg m−2 day−1) and organic matter (mainly detritus; 333 mg m−2 day−1) were recorded during the period in which sea ice drifted ashore and increased in extent, from 13 January to 9 February. Organic matter as fecal pellets (81–93 mg m−2 day−1) and opal as biosilica (51–67 mg m−2 day−1), representing diatom fluxes, were abundant in sediment trap samples obtained during the period of full sea ice coverage from 10 February to 9 March. Microscopic observations revealed that fecal pellets were largely diatom frustules, suggesting that zooplankton actively grazed on ice algae during the period of full sea ice coverage. During the period of retreating sea ice, from 10 to 23 March, the phytoplankton flux showed a rapid increase (from 9.5 to 22.5 × 106 cells m−2 day−1), reflecting their release into the water column as the sea ice melted. Our results demonstrate that the quantity and quality of sinking biogenic and lithogenic materials vary with the seasonal extent of sea ice in mid-winter.  相似文献   

17.
南极海冰区冰藻类群及兴衰过程   总被引:9,自引:2,他引:7       下载免费PDF全文
本文总结了国际上对南极冰藻类群及其生理生态特性的多年研究成果 ,结合我国科学家在南极长城站以及在戴维斯和中山站的越冬研究 ,阐述了南极海冰区的冰藻类群及其形成机理 ,对冰藻的形成、存活、旺发和消亡过程进行讨论 ,并对大洋浮冰区和近岸固定冰区冰藻类群的生态特性进行对比 ,提出了今后有待进一步深入研究的领域  相似文献   

18.
Phytoplankton dynamics and carbon input into Arctic and sub-Arctic ecosystems were investigated around Svalbard, in summer 1991. Phytoplankton biomass, species composition and dissolved nutrient concentrations were analysed from water samples collected along seven transects. Phytoplankton biomass was low especially to the north (Chlorophyll-a mean 0.3 pg 1- '), where flagellates dominated the communities and only ice-diatoms were present. To the west, the phytoplankton composition was representative of a summer Atlantic community, in a post-bloom state. Zooplankton grazing, mainly by copepods, appeared to be the main control on biomass to the west and north of Svalbard.
In the Barents Sea (east of Svalbard), an ice edge bloom was observed (Chlorophyll-a max. 6.8 pgl-') and the ice edge receded at a rate of approximately 1 1 km day-'. The phytoplankton community was represented by marginal ice species, especially Phaeocystis poucherii and Chaeroceros socialis. South of the ice edge, Deep Chlorophyll Maxima (DCM) were observed, as surface waters became progressively nutrient-depleted. In these surface waters, the phytoplankton were predominantly auto- and heterotrophic flagellates.
Carbon production measurements revealed high net production (new and regenerated) to the north of the Barents Sea Polar Front (BSPF); it was especially high at the receding ice edge (reaching 1.44gC m-'day-'). To the south, a low level of production was maintained, mainly through regenerative processes.  相似文献   

19.
Abstract Small, stagnating ice caps at high latitudes are particularly sensitive to climatic fluctuations, especially with regard to changes in ablation season temperature. We conducted mass balance measurements and GPS area surveys on four small High Arctic plateau ice caps from 1999–2002. We compared these measurements with topographic maps and aerial photography from 1959, and with previously published data. Net mass balance (bn) of Murray Ice Cap was ?0.49 (1999), ?0.29 (2000), ?0.47 (2001), and ?0.29 (2002), all in meters of water equivalent (m w.eq.). The mass balance of nearby Simmons Ice Cap was also negative in 2000 (bn=?0.40 m w.eq.) and in 2001 (bn=?0.52 m w.eq.). All four ice caps experienced substantial marginal recession and area reductions of between 30 and 47% since 1959. Overall, these icecaps lost considerable mass since at least 1959, except for a period between the mid‐1960s and mid‐1970s characterized regionally by reduced summer melt, positive mass balance, and ice cap advance. The regional equilibrium line altitude (ELA) is located, on average, above the summits of the ice caps, indicating that they are remnants of past climatic conditions and out of equilibrium with present climate. The ice caps reached a Holocene maximum and were several times larger during the Little Ice Age (LIA) and their current recession reflects an adjustment to post‐LIA climatic conditions. At current downwasting rates the ice masses on the Hazen Plateau will completely disappear by, or soon after, the mid‐21st century.  相似文献   

20.
George VI Ice Shelf is the largest ice shelf on the western side of the Antarctic Peninsula and its northern margin marks the southern most latitudinal limit of recent ice shelf retreat. As part of a project to reconstruct the long-term (Holocene) history of George VI Ice Shelf we studied two epishelf lakes impounded by the ice shelf at Ablation Point, on the east coast of Alexander Island. These lakes, Moutonnée and Ablation, are stratified water bodies with a lower marine layer and an upper freshwater layer. To determine if their sediment records could be used to detect past changes in the presence or absence of the ice shelf it was necessary to describe their present-day limnology and sedimentology. We measured water column chemistry and sampled the water column and sediments of the lakes along vertical and horizontal transects. We analysed these samples for diatoms, stable isotopes (δ18O, δ2H, δ13CDIC, δ13Corg), geochemistry (TOC, TN, C/N ratios) and physical sedimentology (grain-size). This was supplemented by chemical and biological reference data from the catchments. Results showed that the water columns of both lakes are nutrient limited and deficient in phytoplankton. Benthic productivity is low and decreases with depth. Comparison of water column chemistry with an earlier survey shows a net increase in the thickness of the freshwater layer in Moutonnée Lake between 1973 and 2001, which could indicate that George VI Ice Shelf has thinned during this period. However, a similar trend was not observed in Ablation Lake (5 km to the north) and an alternative explanation is that the changes are a seasonal phenomena. Data from the surface sediment transects identified a number of proxies that respond to the present day stratification of the water column including diatom species composition, stable isotopes and geochemistry, particularly in Moutonnée Lake. Collectively these data have been used to develop a conceptual model for determining past ice shelf configuration in epishelf lakes. Specifically, periods of past ice shelf loss, and the removal of the ice dam, would see the present stratified epishelf lake replaced by a marine embayment. It is suggested that this change would leave a clear signature in the lake sediment record, notably the deposition of an exclusively marine biological assemblage, increased ice rafted debris and δ13Corg values that are indicative of marine derived organic matter. These authors contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号