首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative study of ion cyclotron waves at Mars, Venus and Earth   总被引:1,自引:0,他引:1  
Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion’s gyrofrequency. At Mars and Venus and in the Earth’s polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth’s polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.  相似文献   

2.
N. Sergis  X. Moussas 《Solar physics》2002,209(2):409-419
Small amplitude MHD waves at the proton gyrofrequency were detected and analyzed using the magnetic field measurements obtained by the Mars Global Surveyor, in the region upstream of the Martian bow shock, between days 87 and 255 of 1998. The origin of the observed ULF waves was found to be protons back-streaming from the bow shock and pick-up protons from the planetary hydrogen exosphere, interacting with the incoming solar wind. A small contribution of oxygen ions has also been detected. Furthermore, the spatial distribution of the waves was investigated, using the spacecraft's position during the time the data were obtained.  相似文献   

3.
We present measurements with an Energetic Neutral Atom (ENA) imager on board Mars Express when the spacecraft moves into Mars eclipse. Solar wind ions charge exchange with the extended Mars exosphere to produce ENAs that can spread into the eclipse of Mars due to the ions' thermal spread. Our measurements show a lingering signal from the Sun direction for several minutes as the spacecraft moves into the eclipse. However, our ENA imager is also sensitive to UV photons and we compare the measurements to ENA simulations and a simplified model of UV scattering in the exosphere. Simulations and further comparisons with an electron spectrometer sensitive to photoelectrons generated when UV photons interact with the spacecraft suggest that what we are seeing in Mars' eclipse are ENAs from upstream of the bow shock produced in charge exchange with solar wind ions with a non-zero temperature. The measurements are a precursor to a new technique called ENA sounding to measure solar wind and planetary exosphere properties in the future.  相似文献   

4.
We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small.  相似文献   

5.
Recent U.S.S.R. studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S.A. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for Moon, Mars, Venus, Earth and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973  相似文献   

6.
We have studied the interaction of fast solar wind hydrogen atoms with the martian atmosphere by a three-dimensional Monte Carlo simulation. These energetic neutral hydrogen atoms, H-ENAs, are formed upstream of the martian bow shock. Both H-ENAs scattered and non-scattered from the martian atmosphere/exosphere were studied. The colliding H-ENAs were found to scatter both to the dayside and nightside. On the dayside they contribute to the so-called H-ENA albedo. On the nightside the heated and scattered hydrogen atoms were found also in the martian wake. The density, the energy distribution function and the direction of the velocity of H-ENAs on the nightside are presented. The present study describes a novel “ENA sounding” technique in which energetic neutral atoms are used to derive information of the properties of planetary exosphere and atmosphere in a similar manner as the solar wind photons are used to derive atmospheric densities by measuring the scattered UV light. A detailed study of the direction and energy of the scattered and non-scattered H-ENAs suggest that the ENA sounding is a method to study the interaction between the planetary atmosphere and the solar wind and to monitor the density, and likely also the magnetization, of the planetary upper atmosphere. Already present-day ENA instrument should be capable to detect the analyzed particle fluxes.  相似文献   

7.
李家威  杨磊  吴德金 《天文学报》2023,64(3):31-144
离子回旋波(Ion Cyclotron Wave, ICW)是指频率接近离子回旋频率的一种等离子体波,它在火星上游广泛存在,卫星观测到的频率多在质子回旋频率附近. ICW是拾起离子时的副产物,成为新生行星质子存在的间接标志.火星上游ICW自1990年首次报道以来,受到广泛的关注.总结了火星上游ICW的研究进展,包括ICW事件的观测、ICW的产生机制、统计性质以及将来的研究趋势.  相似文献   

8.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

9.
《Planetary and Space Science》2006,54(13-14):1457-1471
Observations of oxygen pickup ions by the plasma analyzer on the Pioneer Venus Orbiter (PVO) Mission arguably launched broad interest in solar wind erosion of unmagnetized planet atmospheres, and its potential evolutionary effects. Oxygen pickup ions may play key roles in the removal of the oxygen excess left behind from the photodissociation of water vapor by enabling direct escape, additional sputtering of oxygen when they impact the exobase, and escape as energetic neutrals produced in charge exchange reactions with the ambient exospheric oxygen and hydrogen. Although the PVO observations were compromised by an ∼8 keV energy limit for O+ detection, a lack of ion composition capability, and the limited sampling and data rate of the plasma analyzer which was designed for solar wind monitoring, these measurements provide our best information about the extended O+ exosphere and wake at Venus. Here we show the full picture of the spatial distribution and energies of the O+ ion observations collected by the plasma analyzer during PVO's ∼5000 orbit tour. A model of O+ test particles launched in the circum-Venus fields described by an MHD simulation of the solar wind interaction is used to help interpret the PVO observations and to anticipate the expanded view of Venus O+ escape that will be provided by the ASPERA-4 experiment on Venus Express.  相似文献   

10.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

11.
The Analyzer of Space Plasma and EneRgetic Atoms (ASPERA-3) on board Mars Express is designed to study the interaction between the solar wind and the atmosphere of Mars and to characterize the plasma and neutral gas environment in near-Mars space. Neutral Particle Detectors (NPD-1 and 2), which form part of the ASPERA-3 instrument suite, are Energetic Neutral Atom (ENA) detectors which use the time-of-flight (ToF) technique to resolve the energy of detected particles. In the present study, we perform a statistical analysis of NPD ToF data collected between 14 March 2004 and 17 June 2004 when Mars Express was located at the dayside of Mars looking toward the planet. After pre-processing and removal of UV contamination, the ToF spectra were fitted with simple analytical functions so as to derive a set of parameters. The behavior of these parameters, as a function of spacecraft position and attitude, is compared with a model, which describes ENA generation by charge exchange between shocked solar wind protons and extended Martian exosphere. The observations and the model agree well, indicating that the recorded signals are charge-exchanged shocked solar wind.  相似文献   

12.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

13.
Sergis  N.  Moussas  X. 《Solar physics》2001,201(1):191-200
A very smooth and time-invariable bow shock of Mars is revealed using Mars Global Surveyor's data. The bow-shock position has been identified using magnetic and electron flux data obtained by the Magnetometer and Electron Reflectometer (MAG/ER) experiment aboard Mars Global Surveyor, in the time period between days 87 and 255 of 1998. From the magnetic field and the electron flux measurements, 148 bow-shock crossings were detected, concentrated mostly on the northern hemisphere of the planet. With these results, a 3D configuration of the bow shock is constructed and presented. The results show that part of the observed bow shock is a surprisingly smooth surface. It is possible that the bow shock is smooth only in the northern hemisphere, since the southern surface is characterized by local magnetic anomalies. Its real shape can only be revealed in a 3D representation in the planetary centered solar ecliptic coordinate system and questions the theoretically expected variation of the bow shock.  相似文献   

14.
In June 2006 Venus Express crossed several times the outer boundary of Venus induced magnetosphere, its magnetosheath and its bow shock. During the same interval the Cluster spacecraft surveyed the dawn flank of the terrestrial magnetosphere, intersected the Earth's magnetopause and spent long time intervals in the magnetosheath. This configuration offers the opportunity to perform a joint investigation of the interface between Venus and Earth's outer plasma layers and the shocked solar wind. We discuss the kinetic structure of the magnetopause of both planets, its global characteristics and the effects on the interaction between the planetary plasma and the solar wind. A Vlasov equilibrium model is constructed for both planetary magnetopauses and provides good estimates of the magnetic field profile across the interface. The model is also in agreement with plasma data and evidence the role of planetary and solar wind ions on the spatial scale of the equilibrium magnetopause of the two planets. The main characteristics of the two magnetopauses are discussed and compared.  相似文献   

15.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

16.
We have used the ion mass analyzer (IMA) and magnetometer (MAG) on Venus Express (VEX) to study escaping O+ during interplanetary coronal mass ejections (ICMEs). Data from 389 VEX orbits during 2006 and 2007 revealed 265 samples of high energy pick-up ion features in 197 separate orbits. Magnetometer data during the same time period showed 17 ICMEs. The interplanetary conditions associated with the ICMEs clearly accelerate the pick-up ions to higher energies at lower altitudes compared to undisturbed solar wind. However, there is no clear dependence of the pick-up ion flux on ICMEs which may be attributed to the fact that this study used data from a period of low solar activity, when ICMEs are slow and weak relative to solar maximum. Alternatively, atmospheric escape rates may not be significantly changed during ICME events.  相似文献   

17.
Shock surfing acceleration   总被引:1,自引:0,他引:1  
Analytical and numerical analysis identify shock surfing acceleration as an ideal pre-energization mechanism for the slow pick-up ions at quasiperpendicular shocks. After gaining sufficient energy by shock surfing, pick-up ions undergo diffusive acceleration to reach their observed energies. Energetic ions upstream of the cometary bow shock, acceleration of solar energetic particles by magnetosonic waves in corona, ion enhancement in interplanetary shocks, generation of anomalous cosmic rays from interstellar pick-up ions at the termination shock are some of the cases where shock surfing acceleration apply. Inclusion of the lower-hybrid wave turbulence into the laminar model of shock surfing can explain the preferential acceleration of heavier particles as observed by Voyager at the termination shock. At relativistic energies, unlimited acceleration of ions is theoretically possible; because for sufficiently strong shocks main limitation of the mechanism, caused by the escape of accelerated particles downstream of the shock during acceleration no longer exists.  相似文献   

18.
X-ray observations of Venus are so challenging that the first detection of Venusian X-rays succeeded only in January 2001, with the Chandra satellite. The X-rays from Venus were found to result from fluorescent scattering of solar X-rays in the Venusian thermosphere. An additional component, caused by charge exchange of highly charged heavy ions in the solar wind with atoms in the Venusian exosphere, was suspected, but could not be unambiguously detected. This was hampered by the fact that the observation occurred during solar maximum, when the solar X-ray flux is highest. In order to investigate the presence of an additional charge exchange component, Venus was observed again in March 2006 and October 2007 with Chandra, taking advantage of the fact that the solar X-ray flux had decreased considerably on its way to solar minimum. In fact, these subsequent observations were able to show that also the Venusian exosphere is emitting X-rays, due to its interaction with the solar wind. Here an overview of all the existing X-ray observations of Venus is presented, including first results from the most recent one, which took place after the arrival of Venus Express, providing the first ever opportunity to combine a remote X-ray observation of a planetary exosphere with simultaneous in situ measurements of the solar wind.  相似文献   

19.
For the first time since 1992 when the Pioneer Venus Orbiter (PVO) ceased to operate, there is again a plasma instrument in orbit around Venus, namely the ASPERA-4 flown on Venus Express (inserted into an elliptical polar orbit about the planet on April 11, 2006). In this paper we report on measurements made by the ion and electron sensors of ASPERA-4 during their first five months of operation and, thereby, determine the locations of both the Venus bow shock (BS) and the ion composition boundary (ICB) under solar minimum conditions. In contrast to previous studies based on PVO data, we employ a 3-parameter fit to achieve a realistic shape for the BS. We use a different technique to fit the ICB because this latter boundary cannot be represented by a conic section. Additionally we investigate the dependence of the location of the BS on solar wind ram pressure (based on ASPERA-4 solar wind data) and solar EUV flux (using a proxy from Earth).  相似文献   

20.
We present the first two-spacecraft near-simultaneous observations of the Martian bow shock (BS), magnetic pileup boundary (MPB) and photo-electron boundary (PEB) obtained by the plasma instruments onboard Rosetta and Mars Express during the Rosetta Mars flyby on February 25, 2007. Our observations are compared with shape models for the BS and MPB derived from previous statistical studies. The MPB is found at its expected position but the BS for this event is found significantly closer to the planet than expected for the rather slow and moderately dense solar wind. Cross-calibration of the density measurements on the two spacecraft gives a density profile through the magnetosheath, indicating an increasing solar wind flux during the Rosetta passage which is consistent with the multiple BS crossings at the Rosetta exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号