首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectrum of propagating waves and instabilities on a current-carrying, zero gas pressure, twisted magnetic flux loop is analysed for several models of the magnetic field structure. A surface wave mode of the fast Alfvén wave is found to exist, with damping of the wave when Alfvén resonance absorption occurs. If the loop is surrounded by a uniform, purely axial magnetic field, then the surface wave is always stable. If the loop is surrounded by a nonuniform field which is continuous with the loop's field, then the surface wave may connect to the unstable external kink mode.  相似文献   

2.
The spatial structure and stability properties of the coupled Alfvén and drift compressional modes in a space plasma are studied in a gyrokinetic framework in a model taking into account field-line curvature and plasma and magnetic field inhomogeneity across the magnetic shells. The perturbation is found to be localized in two transparent regions, the Alfvén and drift compressional transparent regions, where the wave vector radial component squared is positive. Both regions are bounded by the resonance and cut-off surfaces, where the wave vector radial component turns into infinity and zero, respectively. An existence of the drift compressional resonance is one of the most important results of this work. It is argued that on the surface of this resonance the longitudinal and azimuthal components of the wave's magnetic field have a pole and logarithmic singularities, respectively. The instability conditions and expressions for the growth rate of the coupled modes have been obtained. In the Alfvénic transparent region, an instability occurs in the presence of the negative plasma temperature gradient. This instability does not lead to a non-stationary wave behavior: all the energy gained from the resonance particles was finally absorbed owing to any dissipation process. In a drift compressional transparent region, a necessary condition for the instability is the growth of the temperature with the radial coordinate. The growth rate is almost independent of the radial coordinate, which means that the wave energy gained from the particles cannot disappear. It will lead to an ever increasing wave amplitude, and no stationary picture for the unstable drift compressional mode is possible.  相似文献   

3.
K. Murawski 《Solar physics》1992,139(2):279-297
The nonlinear propagation of the Alfvén and magnetosonic waves in the solar corona is investigated in terms of model equations. Due to viscous effects taken into account the propagation of the fast wave itself is governed by Burgers type equations possessing both expansion and compression shock solutions. Numerical simulations show that both parallely and perpendicularly propagating fast waves can steepen into shocks if their amplitudes are in excess of some sizeable fraction of the Alfvén velocity. However, if the magnetic field changes linearly in the perpendicular direction, then formation of perpendicular shocks can be hindered. The Alfvén waves exhibit a tendency to drive both the slow and fast magnetosonic waves whose propagation is described by linearized Boussinesq type equations with ponderomotive terms due to the Alfvén wave. The limits of the slow and fast waves are investigated.  相似文献   

4.
Shear flow instability is studied in the planar magnetopause boundary layer region by treating the plasma as compressible. A necessary criterion for instability near the Alfvén resonance is obtained. Sufficient criterion for instability is derived from the solution of a six degree polynomial for the cases of constant and antisymmetric velocity profiles when there is no Alfvén resonance. Both the criteria are obtained analytically for the first time. The necessary criterion generalises the well-known inflexion point theorem and Rayleigh's criterion in the hydrodynamic case to magnetohydrodynamic case for incompressible plasma provided both the Alfvén surfaces lie in the boundary layer. The Alfvén resonant surfaces are similar to the boundary walls in hydrodynamics. A semi-hyperbola theorem for the unstable situation is derived which represents the domain of Doppler shifted real frequency and imaginary frequency. From the sufficient criterion for instability it is observed that plasma shear should be more for a compressible plasma in order to make the plasma unstable. The growth rate for instability is obtained. A thin layer around Alfvén resonance effectively determines how fast the flow could attain instability.  相似文献   

5.
Erdélyi  Róbert 《Solar physics》1998,180(1-2):213-229
The effect of equilibrium flow on linear Alfvén resonances in coronal loops is studied in the compressible viscous MHD model. By means of a finite element code, the full set of linearised driven MHD equations are solved for a one-dimensional equilibrium model in which the equilibrium quantities depend only on the radial coordinate. Computations of resonant absorption of Alfvén waves for two classes of coronal loop models show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We find that a steady equilibrium shear flow can also significantly influence the resonant absorption of Alfvén waves in coronal magnetic flux tubes. The presence of an equilibrium flow may therefore be important for resonant Alfvén waves and coronal heating. A parametric analysis also shows that the resonant absorption can be strongly enhanced by the equilibrium flow, even up to total dissipation of the incoming wave.  相似文献   

6.
Most of the MHD instabilities originating from the nonuniformity of a plasma excite MHD surface wave. When the excited wave has a frequency s which corresponds to the local shear Alfvén wave resonance (s = k v a (x), where v a is the Alfvén speed and k is the wave number in the direction of the magnetic field), the surface wave resonantly mode converts to the kinetic Alfvén wave, the Alfvén wave having a perpendicular wavelength comparable to the ion gyroradius and being able to propagate across the magnetic field. We discuss various linear and nonlinear effects of this kinetic Alfvén wave on the plasma including particle acceleration and heating. A specific example for the case of a MHD Kelvin-Helmholtz instability is given.  相似文献   

7.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

8.
Y. Chen  Y.Q. Hu 《Solar physics》2001,199(2):371-384
This paper presents a two-dimensional, Alfvén-wave-driven solar wind model, in which the wave energy is assumed to cascade from the low-frequency Alfvén waves to high-frequency ion cyclotron waves and to be transferred to the solar wind protons by cyclotron resonance at the Kolmogorov rate. A typical structure in the meridional plane consisting of a coronal streamer near the Sun, a fast wind in high latitudes, and a slow wind across the heliospheric current sheet, is found. The fast wind obtained in the polar region is essentially similar to that derived by previous one-dimensional flow-tube models, and its density profile in the vicinity of the Sun roughly matches relevant observations. The proton conditions at 1 AU are also consistent with observations for both the fast and slow winds. The Alfvén waves appear in the fast- and slow-wind regions simultaneously and have comparable amplitudes, which agrees with Helios observations. The acceleration and heating of the solar wind by the Alfvén waves are found to occur mainly in the near-Sun region. It is demonstrated in terms of one-dimensional calculations that the distinct properties of the fast and slow winds are mainly attributed to different geometries of the flow tubes associated with the two sorts of winds. In addition, the 2-D and 1-D simulations give essentially the same results for both the fast and the slow winds.  相似文献   

9.
The resonant absorption of small amplitude surface Alfvén waves is studied in nonlinear incompressible MHD for a viscous and resistive plasma. The reductive perturbation method is used to obtain the equation that governs the spatial and temporal behaviour of small amplitude nonlinear surface Alfvén waves. Numerical solutions to this equation are obtained under the initial condition that att = 0 the spatial variation is purely sinusoidal. The numerical results show that nonlinearity accelerates the wave damping due to resonant absorption. Resonant absorption is a more efficient wave damping mechanism than can be anticipated on the basis of linear theory.  相似文献   

10.
The pick up cometary ion distributions are shown to excite Alfvénic mode instabilities, slow ion-acoustic mode instability and a lower hybrid instability during solar wind-comet interaction. The growth rates of all these instabilities become larger as the comet is approached. The lower hybrid instability is shown to account for the low-frequency 0–300 Hz electrostatic turbulence observed near comet Halley. The Alfvén modes can grow to large amplitudes and become modulationally unstable, in the presence of low-frequency density fluctuations, going over to envelope Alfvén solitons. A model consisting of a gas of Alfvén solitons is suggested to explain the hydromagnetic turbulence observed near comet Halley and comet Giacobini-Zinner.  相似文献   

11.
Jonas Lundberg 《Solar physics》1994,154(2):215-230
The weakly nonlinear wave propagation of a slow sausage surface wave traveling along a magnetized slab with a thin nonuniform boundary layer is considered. The ideal incompressible MHD equations are used and the nonlinearities are assumed to be due to second harmonic generation. A nonlinear dispersion relation and the related nonlinear Schrödinger equation is derived. The existence of a continuous thin interface leads to sharply peaked field amplitudes due to resonant interaction with local Alfvén waves. It is shown that the nonlinear effects from processes within the thin layer are much more important than those from the main slab. Furthermore, the nonlinear interaction with local Alfvén waves yields a nonlinear damping rate of the wave that is much larger than the linear damping rate when the transition layer is sufficiently thin.  相似文献   

12.
We analyse the linear transformation of Alfvén p-modes into quasisurface waves and the resonant absorption of Alfvén p-waves in a slowly varying medium with a density gradient, parallel to the ambient homogeneous magnetic field. It is pointed out, that the energy transfer from Alfvén p-waves to quasisurface waves appear to take place in sunspots. The results obtained also suggest that Alfvén p-waves generated by overstability in sunspots may be absorbed in deep layers under sunspots. Moreover, it is very likely that part of the downward wave flux is reflected and hence it is possibble that essentially the energy from sunspots is transported outward by magnetogravitational waves, to which Alfvén p-waves are transformed.  相似文献   

13.
Sunspots absorb and scatter incident f- and p-modes. Until recently, the responsible absorption mechanism was uncertain. The most promising explanation appears to be mode conversion to slow magnetoacoustic-gravity waves, which carry energy down the magnetic field lines into the interior. In vertical magnetic field, mode conversion can adequately explain the observed f-mode absorption, but is too inefficient to account for the absorption of p-modes. In the first paper of the present series we calculated the efficiency of fast-to-slow magnetoacoustic-gravity wave conversion in uniform non-vertical magnetic fields. We assumed two-dimensional propagation, where the Alfvén waves decouple. In comparison to vertical field, it was found that mode conversion is significantly enhanced in moderately inclined fields, especially at higher frequencies. Using those results, Cally, Crouch, and Braun showed that the resultant p-mode absorption produced by simple sunspot models with non-vertical magnetic fields is ample to explain the observations. In this paper, we further examine mode conversion in non-vertical magnetic fields. In particular, we consider three-dimensional propagation, where the fast and slow magnetoacoustic-gravity waves and the Alfvén waves are coupled. Broadly speaking, the p-mode damping rates are not substantially different to the two-dimensional case. However, we do find that the Alfvén waves can remove similar quantities of energy to the slow MAG waves.  相似文献   

14.
The influence of a constant coronal magnetic field on solar global oscillations is investigated for a simple planar equilibrium model. The model consists of an atmosphere with a constant horizontal magnetic field and a constant sound speed, on top of an adiabatic interior having a linear temperature profile. The focus is on the possible resonant coupling of global solar oscillation modes to local slow continuum modes of the atmosphere and the consequent damping of the global oscillations. In order to avoid Alfvén resonances, the analysis is restricted to propagation parallel to the coronal magnetic field. Parallel propagating oscillation modes in this equilibrium model have already been studied by Evans and Roberts (1990). However, they avoided the resonant coupling to slow continuum modes by a special choice of the temperature profile. The physical process of resonant absorption of the acoustic modes with frequency in the cusp continuum is mathematically completely described by the ideal MHD differential equations which for this particular equilibrium model reduce to the hypergeometric differential equation. The resonant layer is correctly dealt with in ideal MHD by a proper treatment of the logarithmical branch cut of the hypergeometric function. The result of the resonant coupling with cusp waves is twofold. The eigenfrequencies become complex and the real part of the frequency is shifted. The shift of the real part of the frequency is not negligible and within the limit of observational accuracy. This indicates that resonant interactions should definitely be taken into account when calculating the frequencies of the global solar oscillations.  相似文献   

15.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

16.
E. N. Parker 《Solar physics》1974,37(1):127-144
The properties of Alfvén waves in a vertical column of field are pointed out as a guide in treating the complicated problem of overstability. There are internal Alfvén waves of arbitrary form propagating along the magnetic field, without disturbing the fluid outside the column. There are also surface waves which involve the fluid both inside and outside the column of field. The surface waves propagate at a speed less than the Alfvén speed.Convective forces couple the internal and external fluid motions. If the forces are not too strong, the identity of the modes, as internal waves or surface waves, is maintained. The surface waves are unstable and, we suggest, may contribute to some of the activity of a sunspot. We suggest that the internal Alfvén wave modes are of more central interest for producing the basic sunspot phenomena. They represent the degenerate case, and their form is worked out in some detail. The overstable Alfvén wave modes peak sharply near the outer edge of the field, and do not strongly disturb the fluid outside. We suggest that this effect contributes to the sharp edge of the sunspot umbra.Recent observations by Giovanelli show intense wave activity originating inside the edge of the umbra. We tentatively identify the activity with the peak in the overstable modes within the umbra.This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 14-001-001.  相似文献   

17.
The importance of Alfvén wave generation in interacting plasmas is discussed in general and illustrated by the example of solar wind interaction with cometary plasma. The quasi-linear theory of Alfvén wave generation by cometary ions at distances far from the cometary nucleus is reviewed. The incorporation of a diabatic plasma compression effects into this theory modifies the spectrum of Alfvén waves and the integral intensity of magnetic field fluctuations previously published. These results are in quantitative agreement with thein situ observations near the comets Giacobini-Zinner and Halley. However, the polarization of quasi-linearly excited waves needs further detailed comparison with observations.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

18.
A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfvén resonant layer in an axially bounded, straight cylindrical coronal loop. The physical model employed is an incompressible, reduced magnetohydrodynamic (MHD) model including resistivity, viscosity, and density variation. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfvén driving amplitude and inversely proportional to the width of the Alfvén resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfvén resonant layer width, and decreases at higher m's. (m is the azimuthal mode number.)  相似文献   

19.
P. K. Shukla  G. Feix 《Solar physics》1989,123(1):117-125
Nonlinear interaction of finite-amplitude Alfvén waves with non-resonant finite-frequency electrostatic and stationary electromagnetic perturbations is considered. This interaction is governed by a pair of coupled equations consisting of nonlinear Schrödinger equation for the Alfvén wave envelope and an equation for the plasma slow response that is driven by the ponderomotive force of the Alfvén wave packets. The modulational instability of a constant amplitude Alfvén pump is investigated and some new results for the growth rate of the instability are presented. It is found that a possible stationary state of the modulated Alfvén wave packets could lead to localized structures. The relevance of our investigation to the solar atmosphere is discussed.  相似文献   

20.
Poedts  S.  Tóth  G.  Beliën  A.J.C.  Goedbloed  J.P. 《Solar physics》1997,172(1-2):45-52
The phase mixing and resonant dissipation of Alfvén waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic structures. The nonlinear simulations show that the periodically varying shear flows that occur in the resonant layers are unstable. In coronal holes, the phase mixing of running Alfvén waves is speeded up by the 'flaring out' of the magnetic field lines in the lower chromosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号