首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lori M. Feaga  Melissa McGrath 《Icarus》2009,201(2):570-1189
An extensive set of HI Lyman-α images obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) from 1997-2001 has been analyzed to provide information about the spatial and temporal character of Io's SO2 atmosphere. An atmospheric distribution map derived from the observations reveals that the sunlit SO2 atmosphere is temporally stable on a global scale, with only small local changes. An anti-/sub-jovian asymmetry in the SO2 distribution is present in all 5 years of the observations. The average daytime atmosphere is densest on the anti-jovian hemisphere in the equatorial regions, with a maximum equatorial column density of 5.0×1016 cm−2 at 140° longitude. The SO2 atmosphere also has greater latitudinal extent on the anti-jovian hemisphere as compared to the sub-jovian. The atmospheric distribution appears to be best correlated with the location of hot spots and known volcanic plumes, although small number statistics for the plumes limits the correlation.  相似文献   

3.
We have performed high-resolution spectral observations at mid-infrared wavelengths of C2H6 (12.16 μm), and C2H2 (13.45 μm) on Saturn. These emission features probe the stratosphere of the planet and provide information on the hydrocarbon photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer Celeste, in conjunction with the McMath-Pierce 1.5-m solar telescope in November and December 1994. We used Voyager IRIS CH4 observations (7.67 μm) to derive a temperature profile on the saturnian atmosphere for the region of the stratosphere. This profile was then used in conjunction with height-dependent volume mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. Our ground-based measurements indicate abundances of for C2H6 (1.0 mbar pressure level), and for C2H2 (1.6 mbar pressure level). We also derived new mixing ratios from the Voyager mid-latitude IRIS observations; 8.6±0.9×10−6 for C2H6 (0.1-3.0 mbar pressure level), and 1.6±0.2×10−7 for C2H2 (2.0 mbar pressure level).  相似文献   

4.
Hydrocarbons in the upper atmosphere of Saturn are known, from Voyager, ground-based, and early Cassini results, to vary in emission intensity with latitude. Of particular interest is the marked increase in hydrocarbon line intensity near the south pole during southern summer, as the increased line intensity cannot be simply explained by the increased temperatures observed in that region since the variations between C2H2 and C2H6 emission in the south pole region are different. In order to measure the latitudinal variations of hydrocarbons in Saturn's southern hemisphere we have used 3 cm−1 resolution Cassini CIRS data from 2006 and combined this with measurements from the ground in October 2006 at NASA's IRTF using Celeste, an infrared high-resolution cryogenic grating spectrometer. These two data sets have been used to infer the molecular abundances of C2H2 and C2H6 across the southern hemisphere in the 1-10 mbar altitude region. We find that the latitudinal acetylene profile follows the yearly average mean daily insolation except at the southern pole where it peaks in abundance. Near the equator (5° S) the C2H2 abundance at the 1.2 mbar level is (1.6±0.19)×10−7 and it decreases by a factor of 2.7 from the equator toward the pole. However, at the pole (∼87° S) the C2H2 abundance jumps to (1.8±0.3)×10−7, approximately the equatorial value. The C2H6 abundance near the equator at the 2 mbar level is (0.7±0.1)×10−5 and stays approximately constant until mid-latitudes where it increases gradually toward the pole, attaining a value of (1.4±0.4)×10−5 there. The increase in ethane toward the pole with the corresponding decrease in acetylene is consistent with southern hemisphere meridional winds [Greathouse, T.K., Lacy, J.H., Bézard, B., Moses, J.I., Griffith, C.A., Richter, M.J., 2005. Icarus 177, 18-31]. The localized increase in acetylene at the pole provides evidence that there is dynamical transport of hydrocarbons from the equator to the southern pole.  相似文献   

5.
Radiative transfer modelling of the Infrared Space Observatory ( ISO ) spectrum of IRAS 22036+5306 has shown that its unusual 11-μm band can be suitably modelled with an alumina-olivine mixture substantially dominated by the former. The results of this work add further credence to recent findings that significant amounts of Al  2O3  dust grains are present in the dust shells of stars near or beyond the tip of the asymptotic giant branch. Indeed, in the case of IRAS 22036+5306, Al  2O3  dominates the dust composition to the extent that it shifts the 9.8-μm band due to amorphous silicates to 11 μm. IRAS 22036+5306 may be an unusual case in that the inner dust torus is maintained at a sufficiently high temperature for Al  2O3  condensation, but not silicate.  相似文献   

6.
Ices in the solar system are observed on the surface of planets, satellites, comets and asteroids where they are continuously subordinate at particle fluxes (cosmic ions, solar wind and charged particles caught in the magnetosphere of the planets) that deeply modify their physical and structural properties. Each incoming ion destroys molecular bonds producing fragments that, by recombination, form new molecules also different from the original ones. Moreover, if the incoming ion is reactive (H+, On+, Sn+, etc.), it can concur to the formation of new molecules.Those effects can be studied by laboratory experiments where, with some limitation, it is possible to reproduce the astrophysical environments of planetary ices.In this work, we describe some experiments of 15-100 keV H+ and He+ implantation in pure sulfur dioxide (SO2) at 16 and 80 K and carbon dioxide (CO2) at 16 K ices aimed to search for the formation of new molecules. Among other results we confirm that carbonic acid (H2CO3) is formed after H-implantation in CO2, vice versa H-implantation in SO2 at both temperatures does not produce measurable quantity of sulfurous acid (H2SO3). The results are discussed in the light of their relevance to the chemistry of some solar system objects, particularly of Io, the innermost of Jupiter's Galilean satellites, that exhibits a surface very rich in frost SO2 and it is continuously bombarded with H+ ions caught in Jupiter's magnetosphere.  相似文献   

7.
8.
9.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

10.
Sulfurous acid (H2SO3) has never been characterized or isolated on Earth. This is caused by the unfavorable conditions for H2SO3 within Earth's atmosphere due to the high temperatures, the high water content and the oxidizing environment. Kinetic investigations by means of transition state theory showed that the half-life of H2SO3 at 300 K is 1 day but at 100 K it is increased to 2.7 billion years. Natural conditions to form H2SO3 presumably require cryogenic SO2 or SO2/H2O mixtures and high energy proton irradiation at temperatures around 100 K. Such conditions can be found on the Jupiter moons Io and Europa. Therefore, we calculated IR-spectra of H2SO3 which we compared with Galileo's spectra of Io and Europa. From the available data we surmise that H2SO3 is present on Io and probably but to a smaller extent on Europa.  相似文献   

11.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

12.
Using photometric observations of the Sun as a star (DIFOS, SoHO) we were able to solve the inverse heloiseismic problem and determine the global time‐dependent relative temperature fluctuations as functions of the geometric height. This was done under the adiabatic assumption. A mathematical tool was developed to solve the inverse problem, which is ill‐posed. The calculations were done using the numerical software Matlab 7. The adiabatic solution shows signs of temperature waves in the lower photosphere, which agrees with calculations done by Rodríguez Hidalgo et al. (2001) and Stodilka (2011). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
T.A. Cassidy  R.E. Johnson  M.C. Wong 《Icarus》2007,191(2):755-764
Results from a three-dimensional ballistic model of Europa's O2 atmosphere are presented. Hubble Space Telescope (HST) ultraviolet observations show spatially non-uniform O2 airglow from Europa. One explanation for this is that the O2 atmosphere is spatially non-uniform. We show that non-uniform ejection of O2 alone cannot reproduce the required morphology, but that a non-uniform distribution of reactive species in Europa's porous regolith can result in a non-uniform O2 atmosphere. By allowing O2 molecules to react with Europa's visibly dark surface material, we produced a spatially non-uniform atmosphere which, assuming uniform electron excitation of O2 over the trailing hemisphere, compares favorably with the morphology suggested by the HST observations. This model, which requires a larger source of O2 than has previously been estimated, can in principal be tested by the New Horizons observations of Europa's O2 atmosphere.  相似文献   

15.
16.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate.  相似文献   

17.
Long-term spectroscopic observations of the O2 dayglow at 1.27 μm result in a map of the latitudinal and seasonal behavior of the dayglow intensity for the full martian year. The O2 dayglow is a sensitive tracer of Mars' photochemistry, and this map reflects variations of Mars' photochemistry at low and middle latitudes. It may be used to test photochemical models. Long-term observations of the CO mixing ratio have been also combined into the seasonal-latitudinal map. Seasonal and latitudinal variations of the mixing ratios of CO and the other incondensable gases (N2, Ar, O2, and H2) discovered in our previous work are caused by condensation and sublimation of CO2 to and from the polar regions. They reflect dynamics of the atmosphere and polar processes. The observed map may be used to test global circulation models of the martian atmosphere. The observed global abundances of CO are in reasonable agreement with the predicted variations with the 11-year solar cycle. Despite the perfect observing conditions, methane has not been detected using the IRTF/CSHELL with a 3σ upper limit of 14 ppb. This upper limit does not rule out the value of 10 ppb observed using the Canada-France-Hawaii Telescope and the Mars Express Planetary Fourier Spectrometer.  相似文献   

18.
We vapor deposit at 20 K a mixture of gases with the specific Enceladus plume composition measured in situ by the Cassini INMS [Waite, J.H., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., Tseng, W.L., 2006. Science 311, 1419-1422] to form a mixed molecular ice. As the sample is slowly warmed, we monitor the escaping gas quantity and composition with a mass spectrometer. Pioneering studies [Schmitt, B., Klinger, J., 1987. Different trapping mechanisms of gases by water ice and their relevance for comet nuclei. In: Rolfe, E.J., Battrick, B. (Eds.), Diversity and Similarity of Comets. SP-278. ESA, Noordwijk, The Netherlands, pp. 613-619; Bar-Nun, A., Kleinfeld, I., Kochavi, E., 1988. Phys. Rev. B 38, 7749-7754; Bar-Nun, A., Kleinfeld, I., 1989. Icarus 80, 243-253] have shown that significant quantities of volatile gases can be trapped in a water ice matrix well above the temperature at which the pure volatile ice would sublime. For our Enceladus ice mixture, a composition of escaping gases similar to that detected by Cassini in the Enceladus plume can be generated by the sublimation of the H2O:CO2:CH4:N2 mixture at temperatures between 135 and 155 K, comparable to the high temperatures inferred from the CIRS measurements [Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C., 2006. Science 311, 1401-1405] of the Enceladus “tiger stripes.” This suggests that the gas escape phenomena that we measure in our experiments are an important process contributing to the gases emitted from Enceladus. A similar experiment for ice deposited at 70 K shows that both the processes of volatile trapping and release are temperature dependent over the temperature range relevant to Enceladus.  相似文献   

19.
The flow law determined experimentally for solid CO2 establishes that a hypothesis of glacial flow of CO2 at the Martian poles is not physically unrealistic. Compression experiments carried out under 1 atm pressure and constant strain rate demonstrate that the strength of CO2 near its sublimation point is considerably less than the strength of water ice near its melting point. The data fit a power law “creep” equation of the form
?? = (4 × 106) σ3.9exp(?12 200RT)
, where ? is compressive strain rate (sec?1), σ is compressive stress (bars), R is the gas constant in calories per mole, and T is absolute temperature. The exponent of σ of 3.9 contrasts with a value near 3.1 for water ice, and indicates that the strain rate is somewhat more sensitive to stress for CO2 than for water. Likewise, the low activation energy for creep, 12 200 cal mole?1, illustrates that CO2 is not highly sensitive to temperature and is thus likely to flow over a broad range of temperatures below its melting point. Strength values for CO2 are of the order of one-tenth to one-third the strength of ice under equivalent conditions.A plausible glacial model for the Martian polar caps can be constructed and is helpful in explaining the unique character of the polar regions. CO2-rich layers deposited near the pole would have flowed outward laterally to relieve high internal shear stresses. The topography of the polar caps, the uniform layering of the layered deposits, and the general extent of the polar “sediments” could all be explained using this model. Flow of CO2 rather than water ice greatly reduces the problems with Martian glaciation. Nevertheless, problems do remain, in particular the large amounts of CO2 necessary, the need to increase vapor pressure and temperature with depth in the polar deposits, and the lack of good observational evidence of flor features. Within the limits of the present knowledge of surface conditions of Mars, CO2 glaciation appears to be a realistic alternate working hypothesis for the origin of the polar features.  相似文献   

20.
Dynamic models of the martian polar caps are in abundance, but most rely on the assumption that the rate of sublimation of CO2 ice can be calculated from heat transfer and lack experimental verification. We experimentally measured the sublimation rate of pure CO2 ice under simulated martian conditions as a test of this assumption, developed a model based on our experimental results, and compared our model's predictions with observations from several martian missions (MRO, MGS, Viking). We show that sun irradiance is the primary control for the sublimation of CO2 ice on the martian poles with the amount of radiation penetrating the surface being controlled by variations in the optical depth, ensuring the formation and sublimation of the seasonal cap. Our model confirmed by comparison of MGS-MOC and MRO-HiRISE images, separated by 2-3 martian years, shows that ∼0.4 m are currently being lost from the south perennial cap per martian year. At this rate, the ∼2.4-m-thick south CO2 perennial cap will disappear in about 6-7 martian years, unless a short-scale climatic cycle alters this rate of retreat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号