首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A special fine structure (slowly drifting chains of narrowband fiber bursts), firstly observed during the solar type-IV radio burst on April 24, 1985, is interpreted as the radio signature of whistler waves periodically excited by a switch-on/switch-off process of a loss-cone instability in a localized wave packet of the fast magnetoacoustic mode.  相似文献   

2.
Peak flux spectra of solar radio bursts in a wide frequency band have been statistically determined for different morphological types of bursts, for various ranges of magnetic field of the burst-associated sunspots and also for the bursts occurring in the central and limb region of the solar disk. Important results obtained are: (i) The generalised spectra have two peaks, one near to meter-wave and the other in the centimeter-wave region, the former peak being more pronounced than the latter; (ii) identical spectral shape is observed for the great and impulsive types and also for GRF and PBI types of bursts; (iii) the radio emission intensity is relatively higher in the central part than that in the limb part of the solar disk for frequencies 1–10 GHz, while the reverse is true for frequencies 0.245–1 GHz and 10–35 GHz; (iv) the optical depth of the absorbing layer above the source of a burst is found to be the same for meter to centimeter-wavelength bursts, implying that the radio sources in this wide band have uniform characteristics with respect to optical thickness; (v) in case of simultaneous emission in the dekameter to X-ray band, most of the decimetric bursts are seen to be very prompt and coincident with the associated flare's starting time. The interpretations of the obtained spectra give an insight into the possible generation mechanisms, pointing to the location of the source region in the solar atmosphere.  相似文献   

3.
We consider the important part played by plasma wave absorption at the higher harmonics of the electron gyrofrequency (under conditions of the so-called double plasma resonance) in the solar corona. An explanation is proposed for the fine structure of Type III bursts on the basis of this effect.  相似文献   

4.
Flux density spectra have been determined for ninety-one simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10–14 W m–2 Hz–1. The primary factor controlling the spectral peak frequency of these bursts appears to be variation in intrinsic power radiated by the source as the exciter moves outward from the Sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.  相似文献   

5.
All four large EUV bursts (peak 10–1030 Å flux enhancements 2 ergs cm–2 s–1 at 1 AU as deduced from sudden frequency deviations), for which there were available concurrent white light observations of at least fair quality, were detected as white light flares. The rise times and maxima of the white light emissions coincided with rise times and maxima of the EUV bursts. The frequency of strong EUV bursts suggests that white light flares may occur at the rate of five or six per year near sunspot maximum. All of the white light flare areas coincided with intense bright areas of the H flares. These small areas appeared to be sources of high velocity ejecta in H. The white light flares occurred as several knots or patches of 2 to 15 arc-sec diameter, with bright cores perhaps less than 2 arc-sec diameter (1500 km). They preferred the outer penumbral borders of strong sunspots within 10 arc-sec of a longitudinal neutral line in the magnetic field. The peak continuum flux enhancement over the 3500–6500 Å wavelength range is about the same order of magnitude as the peak 10–1030 Å flux enhancement.  相似文献   

6.
A plot of frequency separation in fine structure in solar continuum radio bursts against emission frequency indicates that the frequency structure cannot represent local proton plasma frequency modulation. However, the observations are consistent with the interpretation of the frequency structure as harmonics of the local electron cyclotron frequency and lead to reasonable estimates of the ratio between magnetic and kinetic pressures in stable coronal magnetic field configurations producing continuum radio sources.  相似文献   

7.
The longitudinal waves (Bernstein modes and plasma waves near the hybrid frequency) in a mixture of equilibrium coronal plasma and a small group of energetic electrons are investigated. The energetic electrons have a nonequilibrium momentum distribution inherent in trapped particles. The frequency dependence of the cyclotron instability increments is studied. Attention is paid to a significant role of the relativistic effects for the cyclotron instability of longitudinal waves. For sufficiently large velocity of nonequilibrium electrons the increments are shown to increase when the hybrid frequency coincides with one of the gyrofrequency harmonics (double plasma resonance). The results obtained are used in Parts II and III to explain tadpoles and zebra-pattern in solar radio bursts.  相似文献   

8.
The spectra of strong bursts observed at low frequencies by OGO-5 during 1968–1970 are presented. They usually exhibit an intense main peak between 100 kHz and 1 MHz, and sometimes a less intense secondary peak between 1 and 3.5 MHz. Main peaks of 10–12 Wm–2 Hz–1 or more were obtained in very strong events, but because of antenna calibration problems those could be one or two orders of magnitude too high. Recently published work supports the finding that type III bursts at low frequencies can be at least four orders of magnitude more intense than at ground-based frequencies of observation. It is found that the energy received at the Earth increases with decreasing frequency approximately as f –n, where 3 n 4.  相似文献   

9.
The time structure of solar radio decametre Type III bursts occurring during the periods of enhanced emission is investigated. It is found that the time profiles can take a variety of forms of which three distinct types are the following: (1) profiles where the intensity rises to a small but steady value before the onset of the main burst, (2) the intensity of the main burst reduces to a finite level and remains steady before it decays to the base level, (3) the steady state is present during the rise as well as the decay phase of the main burst. It is shown that these profiles are not due to random superposition of bursts with varying amplitudes. They are also probably not manifestations of fundamental-harmonic pairs. Some of the observed time profiles can be due to superposition ot bursts caused by ordered electron beams ejected with a constant time delay at the base of the corona.  相似文献   

10.
One recent discovery that provides a strong constraint on the mechanisms of astrophysical activities is the correlation between the flux and the root-mean-squared (rms) variability of X-ray emission. In this work we study the flux-rms relation of solar radio bursts. Four flares observed by the Solar Radio Broadband Spectrometer (SRBS) of China are analyzed. In these flares, fine structures (FSs) emerge at least in one frequency band of SRBS. We find that the flux-rms relation consists of two components. One relates to the non-FS emission and the other to the FS emission. The flux-rms relationship for the non-FS part of the radio bursts is clearly different from that for the FS part. The former shows a curve-like behavior, while the latter shows a dramatic variation. We propose a model to describe the flux-rms relation of the non-FS part. Our results imply that the non-FS part emission could be triggered by some multiplicative processes. On the contrary, multiplicative mechanisms should be excluded from the explanations of FSs in the radio bursts.  相似文献   

11.
The relationship between the proton intensity in the interplanetary space and radio bursts of type II for 78 proton events for the period of 1989–2005 is studied based on the data of the Radio Solar Telescope Network. Two families of events have been revealed in plots describing the dependence of the intensity of protons with different energies and the rate of the frequency drift of meter-decameter radio bursts. This suggests the generation of shock waves both in the region of flare energy release and at the fronts of coronal mass ejection.  相似文献   

12.
Hard X-ray (?100 keV) time histories of solar flares which occurred on 1978 December 4 and 1979 February 18 are presented. The first flare was observed by 3 identical instruments from near-earth orbit (Prognoz 7) and interplanetary space (Venera 11 and 12). Fine time structure is present down to the 55 ms level for the e-folding rise and fall times. These data may be used to localize the emission region by the method of arrival time analysis.  相似文献   

13.
Solar noise storms (NS) are analyzed by an algorithm which separates a random signal into pulses. The burst duration distribution is shown to be inversely proportional to the squared duration of bursts. The distribution ordinates are proportional to the average pulse repetition frequency, and the distribution maximum corresponds to the limiting pulse duration equal to 0.4–0.6 s. The aggregate lifetime of all short-lasting bursts is approximately equal to the aggregate lifetime of bursts of any other duration. The energy of short-lasting bursts with a duration of 0.2–0.4 s is five times smaller than the energy of longer bursts, and it constitutes only 2–5 percent of the energy of the NS burst component. The power of bursts increases as their duration changes from 0.2 to 1.2 s until it reaches some limit at a duration of 1.2–1.4 s. The power of longer bursts remains almost unchanged up to the end of the investigated duration interval (up to durations of 300 s). Solar burst chains can be some superposition of short-lasting bursts on one longer burst. Thus, the burst energy measurements do not support the widespread point of view that solar noise storms consist of short-lasting type I bursts.  相似文献   

14.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

15.
The relationship between solar radio emissions and transient interplanetary phenomena is reviewed. It is believed that the most significant advance in recent years has come from coordinated studies of coronal mass ejections and moving type IV bursts, where the evidence appears to favour the Langmuir wave hypothesis as the emission mechanism. Type II bursts are not generally a signature of the main energetic particle acceleration in flares. They do, however, occasionally propagate to 1 AU, and beyond, where they are normally accompanied by protons in the 20 MeV region. Apart from the impulsive microwave burst, there is no reliable radio signature associated with energetic particle acceleration in flares, although many phenomena have high correlations with radio emissions. The exceptions suggest that such correlations may be incidental. Therefore, it is concluded that attention should also be given to events with a positive absence of radio emission in order to make progress in understanding solar processes.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

16.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

17.
In this paper, a new method of estimating the spatial directivity (in the form of center-to-limb variation) of microwave burst emission is proposed and derived. Estimations of radioemission directivity values vs observation frequency are obtained. Results are compared to the radio source model using an inhomogeneous magnetic field, source size and particle density, and show a high degree of agreement. Values of model parameters from earlier estimations are confirmed.  相似文献   

18.
Ya. G. Tsybko 《Solar physics》1984,92(1-2):299-315
Type-IIIb, IIId, and III solar decametric radio bursts, being distinguished by the typical negative drift rate of their dynamic spectra, are compared. Observational data were obtained with a UTR-2 antenna during the period 1973–1982. During the analysis of the bursts of all these spectral varieties, the frequency drift time (drift delay) was measured in the ranges 25 to 12.5 MHz, 25 to 20 MHz, and 12.5 to 10 MHz. Durations of type-III bursts were determined at the harmonically-related frequencies of 25 and 12.5 MHz; radio source locations were also used.It is shown that these decametric bursts are distinctly divided into two groups: (1)type-IIIb chains of simple stria bursts and also normal type-III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum; (2) type-III bursts from type-IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type-IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates.The first group of the phenomena is associated with the fundamental F frequency and the second one, with the harmonic H of the coronal plasma frequency. The results of the present investigation agree well with earlier conclusions on the harmonic origin of decametric chains and type-III bursts. Measurements of drift delays in narrow frequency ranges, an octave apart, as well as type-III burst durations at harmonically-related frequencies confirm the existence of both F and H components in the solar radiation. The essential result of 10 years of decametric observations is that the frequency drift rates and durations are rather stable parameters for the various type-III bursts and stria-burst chains. The stability characterizes some unspecified conditions of burst generation in the middle corona.  相似文献   

19.
Microwave observations with exceptionally high spectral resolution are described for a set of 49 solar flares observed between May and October 1981. Total power data were obtained at 40 frequencies between 1 and 18 GHz by the Owens Valley frequency-agile interferometer with 10 s time resolution. Statistical analysis of this sample of microwave bursts established the following significant characteristics of their microwave spectra: (i) Most ( 80%) of the microwave events displayed complex spectra consisting of more than one component during some or all of their lifetime. Single spectral component bursts are rare. It is shown that the presence of more than one component can lead to significant errors when data with low spectral resolution are used to determine the low-side spectral index. (ii) The high-resolution data show that many bursts have a low-side spectral index that is larger than the maximum value of about 3 that might be expected from theory. Possible explanations include the effect of the underlying active region on the perceived burst spectrum and/or the necessity for more accurate calculations for bursts with low effective temperatures, (iii) the peak frequencies of the bursts are remarkably constant during their lifetimes. This is contrary to expectations based on simple models in which the source size and ambient field remain constant during the evolution of a burst.Swiss National Science Foundation Fellow from the University of Bern.  相似文献   

20.
We compare the millimeter, microwave, and soft X-ray emission from a number of solar flares in order to determine the properties of the high-frequency radio emission of flares. The millimeter observations use a sensitive interferometer at 86 GHz which offers much better sensitivity and spatial resolution than most previous high-frequency observations. We find a number of important results for these flares: (i) the 86 GHz emission onset appears often to be delayed with respect to the microwave onset; (ii) even in large flares the millimeter-wavelength emission can arise in sources of only a few arc sec dimension; (iii) the millimeter emission in the impulsive phase does not correlate with the soft X-ray emission, and thus is unlikely to contain any significant thermal bremsstrahlung component; and (iv) the electron energy distributions implied by the millimeter observations are much flatter (spectral indices of 2.5 to 3.6) than is usual for microwave or hard X-ray observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号