首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987111000211   总被引:1,自引:0,他引:1  
Arid and semi-arid regions are susceptible to high levels of erosion.A rapid and cost effective methodological erosion assessment for these regions is required to describe and monitor the processes that control erosion.This study uses remote sensing to describe the contribution of several factors that control erosion.Topography,land use,vegetation density,soil properties and climatic proxies are used to determine erosion risk and to provide basic maps of water and soil conservation practices. A hierarchi...  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987112000400   总被引:2,自引:0,他引:2  
Monitoring of regional groundwater levels provides important information for quantifying groundwater depletion and assessing impacts on the environment Historically,groundwater level monitoring wells in Beijing Plain,China,were installed for assessing groundwater resources and for monitoring the cone of depression.Monitoring wells are clustered around well fields and urban areas.There is urgent need to upgrade the existing monitoring wells to a regional groundwater level monitoring network to acquire information for integrated water resources management.A new method was proposed for designing a regional groundwater level monitoring network.The method is based on groundwater regime zone mapping.Groundwater regime zone map delineates distinct areas of possible different groundwater level variations and is useful for locating groundwater monitoring wells.This method was applied to Beijing Plain to upgrade a regional groundwater level monitoring network.  相似文献   

3.
Ediacaran discs from the Jodhpur Sandstone of the Marwar Supergroup, Rajasthan, exhibit a wide size ranging from a few millimetres to 75 cm in diameter. Exceptionally large size of the discs in these rocks represent the largest reported so far from any Ediacaran assemblage. Although, larger medu-soid discs have been reported from USA, they are from the middle Cambrian and even younger rocks. Presence of microbial mats and weed-like structures with well preserved hold fasts and horizontal rhizome-like structures in association with some of these large-sized discs support their animal affinity, which probably feed on this weed-like vegetations. This association also supports their benthic habitat. Unlike the general trend of sudden increase in size of organisms in Ediacaran period and further decrease in size during Cambrian, these discs continued increasing in size in Cambrian also.  相似文献   

4.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic Indr avati Basin are presented.The kimberlite has been subjected to extensive and pervasive low-temperature alteration.Spinel is the only primary phase identifiable,while olivine macrocrysts and juvenile lapilli are largely pseudomorphed(talc-serpentinecarbonate alteration).However,with the exception of the alkalies,major element oxides display systematic fractionation trends; likewise,HFSE patterns are well correlated and allow petrogenetic interpretation.Various crustal contamination indices such as(SiO2+Al2O3+Na2O)/(MgO+ K2O) and Si/Mg are close to those of uncontaminated kimberlites.Similar La/Yb(79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur(73-145) and Narayanpet(72-156),Eastern Dharwar craton,southern India implies a similarity in their genesis.In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group II kimberlites from southern Africa and central India as well as to ‘transitional kimberlites' from the Eastern Dharwar craton,southern India,and those from the Prieska and Kuruman provinces of southern Africa.There is a striking similarity in the depleted-mantle(TDM) Nd model ages of the Tokapal kimberlite system,Bastar craton,the kimberlites from NKF and WKF,Eastern Dharwar craton,and the Majhgawan diatreme,Bundelkhand craton,with the emplacement age of some of the lamproites from within and around the Palaeo-Mesoproterozoic Cuddapah basin,southern India.These similar ages imply a major tectonomagmatic event,possibly related to the breakup of the supercontinent of Columbia,at 1.3-1.5 Ga across the three cratons.The ‘transitional'geochemical features displayed by many of the Mesoproterozoic potassic-ultrapotassic rocks,across these Indian cratons are inferred to be memories of the metasomatising fluids/melts imprinted on their source regions during this widespread event.  相似文献   

5.
An integrated approach was performed on the soil,plant-crops and groundwater system at the Thiva basin,to evaluate the extent and intensity of the heavy metal contamination,the percentage of metals tra...  相似文献   

6.
http://www.sciencedirect.com/science/article/pii/S1674987112000643   总被引:1,自引:1,他引:1  
Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust.Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block,southern India,and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature(UHT) metamorphism have been reported.Proximal to the UHT rocks are patches and lenses of charnockite(Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss(Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study.The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of~820℃and~9 kbar.Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T(~760℃and~7.5 kbar). which is consistent with the results obtained from geothermobarometry(710—760℃,6.7—7.5 kbar). but significantly lower than the peak temperatures(>1000℃) recorded from the UHT rocks in this locality,suggesting that charnockitization is a post-peak event.The modeling of T versus molar H2O content in the rock(M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opxfree assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%-0.6 mol%.and there is no significant difference in water activity between the two domains.Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid.T-XFe3+(= Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene:Opx is stable at XFe3+ <0.03 in charnockite.while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12.Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid(e.g.,H2O + CH4) during the retrograde stage.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987112000588   总被引:4,自引:2,他引:2  
Large charnockite massifs occur in the high-grade Southern Granulite Terrain(SGT) and Eastern Ghats Belt(EGB) crustal provinces of Peninsular India.Available geochronological data indicate that the magmatism is episodic,associated with distinct orogenic cycles in the different crustal domains. The geochemical data also indicate a change in composition from trondhjemitic at~3.0—2.9 Ga to dominantly tonalitic at~2.6—2.5 Ga to tonalitic-granodiorite-granitic at—2.0—1.9 Ga to dominantly tonalitic at 1.7—1.6 Ga to quartz monzonitic or tonalitic at~1.0—0.9 Ga to granodiorite-granitic at~0.8—0.7 Ga. The trondhjemitic and tonalitic end members are metaluminous.magnesian and calcic to calc-alkalic, characteristic of magnesian group charnockites.The granodioritic to granitic end members are metaluminous to slightly peraluminous.ferroan and calc-alkalic to alkali-calcic,characteristic of ferroan group charnockites.The quartz monzonitic end members are metaluminous to peraluminous,magnesian to ferroan and calcic to calc-alkalic.neither characteristic of the magnesian group nor of the ferroan group of charnockites. Based on the occurrence and difference in composition of the charnockite massifs,it is suggested that the charnockite magmatism registers the crustal growth of the Indian plate on its southern(SGT) and eastern(EGB) sides,along active continental margins by accretion of arcs.  相似文献   

8.
The Central India Tectonic Zone(CITZ) marks the trace of a major suture zone along which the south Indian and the north Indian continental blocks were assembled through subduction-accretioncollision tectonics in the Mesoproterozoic.The CITZ also witnessed the major,plume-related,late Cretaceous Deccan volcanic activity,covering substantial parts of the region with continental flood basalts and associated magmatic provinces.A number of major fault zones dissect the region,some of which are seismically active.Here we present results from gravity modeling along five regional profiles in the CITZ, and combine these results with magnetotelluric(MT) modeling results to explain the crustal architecture. The models show a resistive(more than 2000Ω·m) and a normal density(2.70 g/cm~3) upper crust suggesting\ dominant tonalite-trondhjemite-granodiorite(TTG) composition.There is a marked correlation between both high-density(2.95 g/cm~3) and low-density(2.65 g/cm~3) regions with high conductive zones (<80Ω·m) in the deep crust.We infer the presence of an interconnected grain boundary network of fluids or fluid-hosted structures,where the conductors are associated with gravity lows.Based on the conductive nature,we propose that the lower crustal rocks are fluid reservoirs,where the fluids occur as trapped phase within minerals,fluid-filled porosity,or as fluid-rich structural conduits.We envisage that substantial volume of fluids were transferred from mantle into the lower crust through the younger plume-related Deccan volcanism,as well as the reactivation,fracturing and expulsion of fluids transported to depth during the Mesoproterozoic subduction tectonics.Migration of the fluids into brittle fault zones such as the Narmada North Fault and the Narmada South Fault resulted in generating high pore pressures and weakening of the faults,as reflected in the seismicity.This inference is also supported by the presence of broad gravity lows near these faults,as well as the low velocity in the lower crust beneath regions of recent major earthquakes within the CITZ.  相似文献   

9.
The Abor volcanics outcroping in the core of the Siang window in the Eastern Himalaya comprise voluminous mafic volcanics (47%-56% w(SiO2)),with subordinate felsic volcanics (67%-75% w(SiO2)).The felsi...  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987111001356   总被引:1,自引:0,他引:1  
A total of 103 surface sediment samples collected from the water depth range of 15—3300 m along Vijaydurg-Karwar stretch of central west coast of India were analyzed for foraminiferal content. Relict benthic foraminiferal assemblage was noted within 50—135 m water depth.The relict benthic foraminiferal assemblage that includes Amphistegina,Operculum and Alveolinetta in sediment samples within the water depth of 85—135 m indicates presence of coral reef at this depth during Early Holocene. The presence of barnacle fouling on Relict foraminifera at 60—90 m confirms the paleo-shoreline. The shallow depth zone is characterized by presence of agglutinated relict foraminifera.The agglutinated forms indicate freshwater influx,which eventually increased the sea level and subsequently deteriorated the paleo-coral reef.  相似文献   

11.
A huge triangle-shaped tectonic region in eastern Asia plays host to numerous major earthquakes. The three boundaries of this region, which contains plateaus, mountains, and intermountain basins, are roughly the Himalayan arc, the Tianshan-Baikal, and longitude line 105°E. Within this triangular region, tectonism is intense and major deformation occurs both between crustal blocks and within most of them. Outside of this region, rigid blocks move as a whole with relatively few major earthquakes and relatively weak Cenozoic deformation. On a large tectonic scale, the presence of this broad region of intraplate deformation results from dynamic interactions between the Indian, Philippine Sea-West Pacific, and Eurasian plates, as well as the influence of deep-level mantle flow. The Indian subcontinent, which continues to move northwards at 40 mm/a since its collision with Eurasia, has plunged beneath Tibet, resulting in various movements and deformations along the Himalayan arc that diffuse over a long distance into the hinterland of Asia. The northward crustal escape of Asia from the Himalayan collisional zone turns eastwards and southeastwards along 95°–100°E longitude and defines the eastern Himalayan syntaxis. At the western Himalayan syntaxis, the Pamirs continue to move into central Asia, leading to crustal deformation and earthquakes that are largely accommodated by old EW or NW trending faults in the bordering areas between China, Mongolia, and Russia, and are restricted by the stable landmass northwest of the Tianshan-Altai-Baikal region. The subduction of the Philippine and Pacific plates under the Eurasian continent has generated a very long and narrow seismic zone along trenches and island arcs in the marginal seas while imposing only slight horizontal compression on the Asian continent that does not impede the eastward motion of eastern Asia. In the third dimension, there may be southeastward deep mantle flow beneath most of Eurasia that reaches the marginal seas and may contribute to extension along the eastern margin of Eurasia.  相似文献   

12.
The evolution of Earth's biosphere,atmosphere and hydrosphere is tied to the formation of continental crust and its subsequent movements on tectonic plates.The supercontinent cycle posits that the continental crust is periodically amalgamated into a single landmass,subsequently breaking up and dispersing into various continental fragments.Columbia is possibly the first true supercontinent,it amalgamated during the 2.0-1.7 Ga period,and collisional orogenesis resulting from its formation peaked at 1.95-1.85 Ga.Geological and palaeomagnetic evidence indicate that Columbia remained as a quasi-integral continental lid until at least 1.3 Ga.Numerous break-up attempts are evidenced by dyke swarms with a large temporal and spatial range; however,palaeomagnetic and geologic evidence suggest these attempts remained unsuccessful.Rather than dispersing into continental fragments,the Columbia supercontinent underwent only minor modifications to form the next supercontinent (Rodinia) at 1.1 -0.9 Ga; these included the transformation of external accretionary belts into the internal Grenville and equivalent collisional belts.Although Columbia provides evidence for a form of ‘lid tectonics’,modern style plate tectonics occurred on its periphery in the form of accretionary orogens.The detrital zircon and preserved geological record are compatible with an increase in the volume of continental crust during Columbia's lifespan; this is a consequence of the continuous accretionary processes along its margins.The quiescence in plate tectonic movements during Columbia's lifespan is correlative with a long period of stability in Earth's atmospheric and oceanic chemistry.Increased variability starting at 1.3 Ga in the environmental record coincides with the transformation of Columbia to Rodinia; thus,the link between plate tectonics and environmental change is strengthened with this interpretation of supercontinent history.  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987113000315   总被引:2,自引:0,他引:2  
The Panzhihua gabbroic intrusion,part of the plumbing system of the Emeishan large igneous province, intruded late-Proterozoic dolomites and marls about~263 Ma ago.The dolomites in the contact aureole were converted to brucite marbles and a diverse suite of forsterite,diopside and garnet skarns.The variation in mineralogy is explained in part by differences in the composition of the protolith,particularly the proportion of silica minerals and clay,and in part by transfer of elements from intruding magmas.The trace element compositions of most marbles and skarns are very similar to those of unmetamorphosed dolomites and marls,but some contain high Si,Ti,and Fe contents that are interpreted to have come from a magmatic source.Three brucite marbles sampled~10 m from the contact of the intrusion and named "enriched brucite marble" have trace element compositions very different from their dolomitic protolith:their rare earth elements are strongly enriched whereas levels of Nb-Ta,Zr-Hf and Ti are very low.These characteristics resemble those of carbonate liquid in equilibrium with silicate liquid or more probably with silicate minerals in the case of Panzhihua,a similarity we take to indicate that the sample underwent partial melting.Samples taken up to 300 m from the contact contain brucite indicating that high temperatures persisted well into the country rocks.However,other samples collected only tens of metres from the contact are only slightly recrystallized indicating that conditions in the aureole were highly variable.We suggest that temperatures within the aureole were controlled by conduction of heat from the main intrusion and by supply of additional heat from abundant small dykes within the aureole.Circulation of fluids derived from deeper levels in the aureole flushed the carbon dioxide from the dolomite,lowering temperature needed to partially melt carbonate to the temperatures attained near the intrusion.Irregular but extensive heating destabilized the carbonates of the aureole and decarbonation reactions associated with carbonate breakdown and melting emitted a large volume of CO2,with potential impact on global climate.  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987111000387   总被引:2,自引:0,他引:2  
Fluid flow is an integral part of hydrothermal mineralization,and its analysis and characterization constitute an important part of a mineralization model.The hydrodynamic study of mineralization deals with analyzing the driving forces,fluid pressure regimes,fluid flow rate and direction,and their relationships with localization of mineralization.This paper reviews the principles and methods of hydrodynamic studies of mineralization,and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure,topographic relief,tectonic deformation, and fluid density change due to heating or salinity variation,depending on specific geologic environments and mineralization processes.The study methods may be classified into three types,megascopic(field) observations, microscopic analyses,and numerical modeling.Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic) fluid systems include horizontal veins,sand injection dikes,and hydraulic breccias.Microscopic studies,especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes(FIPs) can provide important information about fluid temperature,pressure,and fluid-structural relationships,thus constraining fluid flow models.Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer,rock deformation and chemical reactions,in order to simulate the distribution of fluid pressure, temperature,fluid flow rate and direction,and mineral precipitation or dissolution in 2D or 3D space and through time.The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits,and can be used directly or indirectly in mineral exploration.  相似文献   

15.
Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC) which belongs to the EW to ENE-WSW tending 1500 km long Proterozoic orogenic belt amalgamat ng the North and South Indian cratonic blocks. The late Grenvillian (1071 ±64 Ma) Raghunathpur porphyritic granitoid gneiss (PGG) batholith comprising alkali feldspar granite, granite, granodiorite, tonalite, quartz syenite and quartz monzonite intruded into the granitoid gneisses of southeastern part of CGC in the Purulia district, West Bengal and is aligned with ENE-WSW trending North Purulia sr~ear zone, Mineral chemistry, geochemistry, physical condition of crystallization and petrogenetic model of Raghunathpur PGG have been discussed for the first time. The petrographic and geochemical features (including major and trace- elements, mineral chemistry and S7Sr/S6Sr ratio) suggest these granitoids to be classified as the shosh- onitic type. Raghunathpur batholith was emplaced at around 800 ~C and at 6 kbar pressure tectonic discrimination diagrams reveal a post-collision tectonic setting while structural studies reveal its emplacement in the extensional fissure of North Purulia shear zone. l'he Raghunathpur granitoid is compared with some similar granitoids of Europe and China to draw its petrogenetic model. Hybridi- zation of mantle-generated enriched mafic magma and crustal magma at lower crust and later fractional crystallization is proposed for the petrogenesis of this PGG. Mafic magma generated in a post-collisional extension possibly because of delamination of subducting slab. Raghunathpur batholith had emplaced in the CGC during the final amalgamation (~ 1.0 Ga) of the North and South Indian cratonic blocks. Granitoid magma, after its generation at depth, was transported to its present level along megadyke channel, ways within shear zones.  相似文献   

16.
The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt.The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E-W and NE-SW trending fracture zones.The main ore minerals are galena, sphalerite,pyrite.chalcopyrite.tetrahedrite and gold.Homogenization temperatures of fluid inclusions are between 130 and 295℃ for quartz and between 90 and 133℃ for sphalerite.Sulphur isotope values obtained from pyrite,galena and sphalerite vary between 1.2‰ and 3‰.indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region.Oxygen isotope values are between 15.0‰ and 16.7‰ and hydrogen isotope values are between -87‰ and -91‰ The sulphur isotope thermometer yielded temperatures in the range of 244-291℃ for the ore formation.Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction- related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian.  相似文献   

17.
Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleoproterozoic Huronian Supergroup of Ontario,Canada is present in the Animikie Basin on the south shore of Lake Superior.These rocks,beginning with the glaciogenic Gowganda Formation,are interpreted as passive margin deposits.The absence of the lower Huronian(rift succession) from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin(Chocolay Group)to deposition on the upper plate of a north-dipping detachment fault,which lacks sediments of the rift phase.Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province,renewed uplift(plume activity) caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga.Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus- the Great Stratigraphic Gap- which lasted for about 350 Ma.This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean.These events caused regional uplift(the Great Stratigraphic Gap) and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode,including the Penokean orogeny,belatedly flooded the southern margin of the Superior province with foreland basin deposits,established the limits of the Superior structural province and played an important role in constructing Laurentia.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987113000078   总被引:1,自引:0,他引:1  
A sequence of gabbros showing isotropic,layered and fine-grained textures is exposed in the Nalaqing mine at the southern tip of the~260 Ma Panzhihua intrusion,SW China.The field relations,structure,texture and mineralogy of the rocks indicate that the sequence represents the transition between the Lower zone and Middle zone of the intrusion.Isotropic gabbros characteristic of the Lower zone pass upward to layered gabbros of the Middle zone through a~5 m-thick microgabbro sheet,within and close to which small-scaled, concordant Fe-Ti oxide ore horizons are identified.Strong fractionation between HFSE and REE in a subset of samples is ascribed to cumulus titanomagnetite into which HFSE are preferentially incorporated over REE,as reflected in the parallel relations between Nb/La,Hf/Sm and Ti/Ti*.Both the isotropic and layered gabbros display cumulate textures and have similar mineral compositions(Mg# of clinopyroxene =~76-79 and An59-61),isotopic compositions[(87Sr/86Sr)i = 0.7044-0.7045 andεNd(t) = +2.4 to +3.9]and trapped liquid contents inferred from Zr abundance(~17-34 ppm).However,there are substantial variations in elemental abundances(V,Cr and PGE) and ratios(Ti/V,La/Yb,Ba/Y and Cu/Pd) between the two types of gabbros,features that cannot be explained by cumulate formation from a common magma in a closed system.The microgabbros generally resemble high-Ti Emeishan basalts in major element compositions,but their low trace element abundances indicate some lost of residual liquid is inevitable despite rapid nucleation and cooling.Combined with available data and observations,we propose a model involving in-situ crystallization,followed by magma recharge and closed-system fractionation to explain the formation of texturally distinctive gabbros at Nalaqing and the evolution of the lower part of the Panzhihua intrusion.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987111000843   总被引:2,自引:0,他引:2  
We report equilibrium sapphirine t quartz assemblage in biotiteeorthopyroxeneegarnet granulites from a new locality in Panasapattu of Paderu region in the Eastern Ghats granulite belt, which provide new evidence for ultrahigh-temperature (UHT) metamorphism at 1030e1050 C and 10 kbar in this region. The development of migmatitic texture, stabilization of the garneteorthopyroxenee plagioclaseeK-feldspar association, prograde biotite inclusions within garnet and sapphirine as well as sapphirine and cordierite inclusions within garnet in these granulites indicate that the observed peak assemblages probably formed during prograde dehydration melting of a BteSilleQtz assemblage, and constrain the prograde stage of the PeT path. The core domains of orthopyroxene porphyroblasts have up to wt(Al2O3) 9.6%, which suggest that the temperatures reached up to 1150 C suggesting extreme crustal metamorphism. These conditions were also confirmed by the garneteorthopyroxene thermobarometery, which yields a PeT range of 1012e960 C and 9.4 kbar. The PeT phase topologies computed using isochemical sections calculated in the model system Na2OeCaOeK2OeFeOeMgOeAl2O3eSiO2 eH2O (NCKFMASH) for metapelites, garnet-free sapphirine granulites and garnet-bearing sapphirine granulites match the melt-bearing assemblages observed in these rocks. Isochemical sections constructed in the NCKFMASH system for an average sub-aluminous metapelite bulk composition, and contoured for modal proportions of melt and garnet, as well as for the compositional isopleths of garnet, predict phase and reaction relations that are consistent with those observed in the rocks. Garnet and orthopyroxene contain Ti-rich phlogopite inclusions, suggesting formation by prograde melting reactions at the expense of phlogopite during ultrahigh-temperature conditions. These PeT results underestimate ‘peak’ conditions, in part as a result of the modification of garnet compositions in the domains where some melt was retained. The post-peak evolution is constrained by a succession of melt-present reactions that occur at P < 10 kbar, inferred from micro-structural relations among various minerals. After high-temperature decompression from the metamorphic peak, the PeT path followed a near isobaric cooling stage to T < 900 C. The UHT rocks investigated in this study occur within a continental collision suture which witnessed prolonged subductioneaccretion history prior to the final collision. We correlate the extreme metamorphism and the stabilization of UHT mineral assemblages to heat and volatile input from an upwelled asthenosphere during subductionecollision tectonics in a Proterozoic convergent plate margin.  相似文献   

20.
By applying the ‘theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of South China, a characteristic target-pattern regional ore zonality has been discovered. During the early and late Yanshanian epoch (corresponding respectively to the Jurassic and Cretaceous periods), two centers of ore formation emerged successively in the Nanling region; the former is mainly for rare metals (W, Sn, Mo, Bi, Nb) and one rareearth element (La) and was generated in the Jurassic period; whereas the latter is mainly for base metals (Cu, Pb, Zn, Sb, Hg), noble metals (Au, Ag), and one radioactive element (U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province. The characteristic giant nonlinear targetpattern regional ore zonality was generated respectively from the two centers of ore formation by the spatio-temporal synchronization process of the Nanling complex metallogenic system. It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality. Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures. Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution. The integral successive processes of synchronization-dynamical clustering-phase dynamics accomplished the regional ore zonality by way of “multiple field dynamics” of spatio-temporal superposition of multiple coupled pulsatory solitary wave trains of the zonal sequences of different ores. A new methodology for revealing regional ore zonality is developed, which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号