首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

2.
Zircons separated from Cretaceous granitoids are dated from a south‐central transect of the Abukuma metamorphic and granitic terrane. The zircon ages do not follow ‘older’ and ‘younger’ granitoid ages that are used conventionally. In the western part of the study area (Zones I, II and III) where the Takanuki and Gosaisho metamorphic rocks are exposed, the Iritono quartz dioritic stock intruding the greenschist facies rocks in Zone III exhibits the oldest age of 121 Ma in the studied region. Quartz diorite located northward shows 112 Ma, but the other four granitoids intruding into the Takanuki and Gosaisho metamorphic rocks are younger and 103–99 Ma. Two‐mica and biotite granites belong to the youngest age group of 99 Ma. The granitic activities of both the Abukuma and Ryoke belts were initiated by intrusion of quartz dioritic magmas and were ended by two‐mica granite activity. The ages of the eastern two batholiths vary from 110 to 106 Ma (four samples), and show no age common to the Kitakami granitoids farther to the north. Throughout the Japanese Islands arc, Cretaceous granitic activities became younger toward the marginal sea side from the Kitakami Mountains, to the Abukuma Highland, and the Ryoke Belt, then to the Sanin belt of the Inner Zone of Southwest Japan.  相似文献   

3.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

4.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   

5.
Granitoids in the Hida region of Japan encompass two main rock types: younger type‐1 granites and older type‐2 granites. Sensitive high mass‐resolution ion microprobe (SHRIMP) U–Pb zircon dating of older type‐2 granites collected from the Tateyama area show similar ages of 245 ± 2 Ma and 248 ± 5 Ma for two gneissose granites, while a significantly younger intrusion age of 197 ± 3 Ma was determined for the younger type‐1 granites collected from the Hayatsukigawa River which belongs to the Okumayama pluton. A felsic gneiss sample (07HI‐3) collected from the right bank of the Hayatsukigawa River yielded multiple complex ages at 330 ± 6 Ma, indicating the timing of the Hida regional tectono‐thermal events that formed the Hida gneisses; 243 ± 8 Ma, representing the timing of intrusion of the augen granite; and 220 Ma, indicating the timing of regional dextral ductile shearing that caused a repeated recrystallization of metamorphic rocks in the study area. Considering the geochronological data, the rock types and assemblages, basement, and Sr–Nd isotopic constraints, we propose that the Hida Belt separated from the Jiamushi massif, which is located in the eastern margin of the Central Asian Orogenic Belt.  相似文献   

6.
We present a new LA–ICP–MS system for zircon fission‐track (FT) and U–Pb double dating, whereby a femtosecond laser combined with galvanometric optics simultaneously ablates multiple spots to measure average surface U contents. The U contents of zircon measured by LA–ICP–MS and standardized with the NIST SRM610 glass are comparable to those measured by the induced FT method, and have smaller analytical errors. LA–ICP–MS FT dating of seven zircon samples including three IUGS age standards is as accurate as the external detector method, but can give a higher‐precision age depending on the counting statistics of the U content measurement. Double dating of the IUGS age standards gives FT and U–Pb ages that are in agreement. A chip of the Nancy 91500 zircon has a homogeneous U content of 84 ppm, suggesting the possibility of using this zircon as a matrix‐matched U‐standard for FT dating. When using the Nancy 91500 zircon as a U‐standard, a zeta calibration value of 42–43 year cm2 for LA–ICP–MS FT dating is obtained. While this value is strictly valid only for the particular session, it can serve as a reference for other studies.  相似文献   

7.
Supracrustal rocks around the North Pole Dome area, Western Australia, provide valuable information regarding early records of the evolution of crustal processes, surface environments, and biosphere. Owing to the occurrence of the oldest known microfossils, the successions at the North Pole Dome area have attracted interest from many researchers. The Paleoarchean successions (Warrawoona Group) mainly comprise mafic‐ultramafic greenstones with intercalated cherts and felsic lavas. Age constraints on the sediments have been mainly based on zircon U–Pb geochronology. However, many zircon grains have suffered from metamictization and contain anomalously high contents of common Pb, which makes interpretation of the U–Pb data complicated. In order to provide more convincing chronological constraints, an U–Pb Concordia age is widely accepted as the best estimate. Most zircons separated from two adamellites also suffered from severe metamictization. In our analyses, less metamictized domains were selected using a pre‐ablation technique in conjunction with elemental mapping, and then their U–Pb isotopic compositions were determined with a laser ablation inductively coupled plasma mass spectrometry. Most analyzed domains contained certain amounts of common Pb (204Pb/206Pb > 0.000 1), whereas three and five U–Pb data points with less common Pb (204Pb/206Pb < 0.000 1) were obtained. These U–Pb datasets yielded U–Pb Concordia ages of ca 3 445 Ma and 3 454 Ma, respectively. These ages represent the timing of the adamellite intrusion, and constrain the minimum depositional age of the Warrawoona Group. In addition, a single xenocrystic zircon grain showed a 207Pb/206Pb age of ca 3 545 Ma, supporting the idea that the sialic basement of the Pilbara Craton existed prior to 3 500 Ma. The in situ U–Pb zircon dating combined with the pre‐ablation technique has the potentials to identify non‐metamictized parts and to yield precise and accurate geochronological data even from partially metamictized zircons.  相似文献   

8.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   

9.
Within the north‐eastern part of the Palawan Continental Terrane, which forms the south‐western part of the Philippine archipelago, several metamorphic complexes are exposed that are considered to be rifted parts of the Asian margin in South‐East China. The protolith age(s) and correlations of these complexes are contentious. The largest metamorphic complex of the Palawan Continental Terrane comprises the Mindoro Metamorphics. The north‐eastern part of this metamorphic complex has recently been found to be composed of protoliths of Late Carboniferous to Late Permian protolith age. However, meta‐sediments exposed at the westernmost tip and close to the southern boundary of the exposure of the Mindoro Metamorphics contain detrital zircons and with U–Pb ages, determined by LA–ICP–MS, in the range 22–56 Ma. In addition, zircons as young as 112 Ma were found in a sample of the Romblon Metamorphics in Tablas. As the youngest detrital zircons provide an upper age limit for the time of deposition in meta‐sediments, these results suggest that the Mindoro and Romblon Metamorphics comprise protoliths of variable age: Late Carboniferous to Late Permian in NE Mindoro; Eocene or later in NW Mindoro; Miocene at the southern margin of the Mindoro metamorphics; and Cretaceous or later on Tablas. The presence of non‐metamorphic sediments of Late Eocene to Early Oligocene age in Mindoro (Lasala Formation), which are older than the youngest metasediments, suggests that metamorphism of the young meta‐sediments of Mindoro is the result of the collision of the Palawan Continental terrane with the Philippine Mobile Belt in Late Miocene. Similarities of the age spectra of zircons from the Eocene to Miocene metamorphics with the Eocene to Early Miocene Lasala Formation suggest that the protoliths of the young metamorphics may be equivalents of the Lasala Formation or were recycled from the Lasala Formation.  相似文献   

10.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

11.
The Lengshuikeng Ag‐Pb‐Zn ore field is located in the North Wuyi Mesozoic volcanic belt south of the Qinzhou–Hangzhou suture zone between the Yangtze and Cathaysia paleo‐plates. Previous zircon U–Pb geochronological studies on ignimbrites and tuffs from this area have yielded conflicting ages of 157–161 Ma (Early Upper Jurassic) and 137–144 Ma (Early Lower Cretaceous). Volcanic rocks in the ore field have even been proposed to include both ages. Our SHRIMP zircon U–Pb dating of the ignimbrite and tuff samples from the ore field, along with field observations and results from geochronological work on other volcanic and sub‐volcanic rocks in the region, shows that two populations of magmatic zircons, one autocrystic and the other xenocrystic, are present in the pyroclastic rocks. The autocrystic zircons have ages suggesting formation/eruption at approximately 140 Ma, whereas the xenocrystic zircons give ages of 155–159 Ma, indicating intrusion of granitic porphyries in the Early Upper Jurassic. Therefore, the pyroclastic rocks in the Lengshuikeng Ag–Pb–Zn ore field formed in the Early Lower Cretaceous. The youngest zircon U–Pb ages from pyroclastic rocks may not represent the formation/eruption ages of the host rock, depending most likely on the existence and/or abundance of juvenile or vitric pyroclasts in the rocks.  相似文献   

12.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

13.
The Upper Cretaceous Himenoura Group in the Amakusa‐Kamishima Island area, southwest Japan is subdivided into the Hinoshima and Amura Formations. In order to determine the numerical depositional age of the formations, zircon U–Pb ages were investigated using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for acidic tuff samples from the lower part of the Hinoshima Formation and the upper part of the Amura Formation. Although the two samples contain some accidental zircons, the samples have a definite youngest age cluster and their weighted mean ages are 85.4 ± 1.3 and 81.5 ± 1.1 Ma, respectively (errors are 95 % confidence interval). These age data indicate that the Himenoura Group in the Amakusa‐Kamishima Island area was deposited mainly in the early Santonian to early Campanian which is consistent with biostratigraphic ages. Additionally, zircon age distributions of the two tuff samples from the upper part of the Hinoshima Formation do not show a distinct youngest peak of eruption age but characteristics of detrital zircons suggestive of maximum depositional age of the host sediments. These results demonstrate that the mean age of the youngest zircon age cluster of a tuff sample does not always indicate depositional age of the tuff, and statistical evaluation of age data is effective to determine depositional age of a tuff bed using zircon U–Pb ages.  相似文献   

14.
The Japanese archipelago underwent two arc–arc collisions during the Neogene. Southwest Honshu arc collided with the Izu‐Bonin‐Mariana arc and the northeast Honshu arc collided with the Chishima arc. The complicated geological structure of the South Fossa Magna region has been attributed to the collision between the Izu‐Bonin‐Mariana arc and the southwest Honshu arc. Understanding the geotectonic evolution of this tectonically active region is crucial for delineating the Neogene tectonics of the Japanese archipelago. Many intrusive granitoids occur around the Kofu basin, in the South Fossa Magna region. Although the igneous ages of these granitoids have been mainly estimated through biotite and hornblende K–Ar dating, here, we perform U–Pb dating of zircon to determine the igneous ages more precisely. In most cases, the secondary post‐magmatic overprint on the zircon U–Pb system was minor. Based on our results, we identify four groups of U–Pb ages: ca 15.5 Ma, ca 13 Ma, ca 10.5 Ma, and ca 4 Ma. The Tsuburai pluton belongs to the first group, and its age suggests that the granite formation within the Izu‐Bonin‐Mariana arc dates back to at least 15.5 Ma. The granitoids of the second group intruded into the boundary between the Honshu arc and the ancient Izu‐Bonin‐Mariana arc, suggesting that the arc–arc collision started by ca 13 Ma. As in the case of the Kaikomagatake pluton, the Chino pluton likely corresponds to a granodiorite formed in a rear‐arc setting in parallel with the other granodiorites of the third group. The U–Pb age of the Kogarasu pluton, which belongs to the fourth group, is the same as those of the Tanzawa tonalitic plutons. This might support a syncollisional rapid granitic magma formation in the South Fossa Magna region.  相似文献   

15.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

16.
The South Kitakami Belt in the northeast Japan is unique in presence of a thick Paleozoic–Mesozoic sedimentary rocks. The Permian sedimentary succession in the Maiya area of this belt is divided into the Nishikori, Tenjinnoki, and Toyoma formations, in ascending stratigraphic order. The Tenjinnoki Formation includes the Yamazaki Conglomerate Member containing granitic clasts. We performed U–Pb dating for detrital zircon of one sample of tuffaceous sandstone from the Nishikori Formation, six samples of sandstone from the Tenjinnoki and Toyoma formations, and five granitic clasts from the Yamazaki Conglomerate using laser ablation-inductively coupled plasma-mass spectrometry. Our dating results show that the tuffaceous sandstone sample has two age peaks at 287 and 301 Ma for the Nishikori Formation, three age peaks at 320–300, 290, and 270 Ma for the Tenjinnoki and Toyoma Formation, and ages of 311, 300, and 270 Ma from granitic clasts of the Yamazaki Conglomerate. In addition, older ages of 452–435 and 380 Ma were obtained from some zircon grains of the sandstone and granitic clasts. Our results suggest igneous activity in these periods. The South Kitakami Belt's origin with respect to continental blocks has been discussed in regard of the margin of North China Block or South China Block. Based on the stratigraphic ages and timing of igneous activity, we conclude that during the Permian the South Kitakami Belt was located at the margin of the South Central Asian Orogenic Belt, near the Solonker-Xra Moron-Changchun suture and the North China Block in East Asia.  相似文献   

17.
Abstract The upper Mesozoic Tetori Group contains numerous fossils of plants and marine and non‐marine animals. The group has the potential to provide key information to improve our understanding of the Middle Jurassic to Early Cretaceous biota of East Asia. However, the depositional age of the Tetori Group remains uncertain, and without good age constraints, accurate correlation with other areas is very difficult. As a first step in obtaining reliable ages for the formations within the Tetori Group, we used laser ablation‐inductively coupled plasma–mass spectrometry to measure the U–Pb ages of zircons collected from tuff beds in the Shokawa district, Takayama City, Gifu Prefecture, central Japan. The youngest reliable U–Pb ages from the tuff beds of the Ushimaru, Mitarai and Okurodani Formations are 130.2 ± 1.7, 129.8 ± 1.0 and 117.5 ± 0.7 Ma, respectively (errors represent 2 SE). These results indicate that the entire Tetori Group in the Shokawa district, which was previously believed to be correlated to the Upper Jurassic to Lower Cretaceous, is in fact correlated to the Lower Cretaceous. The maximum ages of the Ushimaru, Mitarai and Okurodani Formations are late Hauterivian to Barremian, late Hauterivian to Barremian and Barremian to Aptian, respectively.  相似文献   

18.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

19.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

20.
The Indosinian Orogeny plays a significant role in tectonic background and magmatic evolution in Indochina and surrounding regions. Being a part product of the Indosinian magmatism in northwest Vietnam during late Permian–middle Triassic period, Muong Luan granitoid pluton dominantly consists of granodiorite, less diorite and granite. This pluton is located in the Song Ma suture and assigned to the Dien Bien complex. Geochemically, the Muong Luan granitoid rocks are characterized by a wide range of SiO2 contents (59.9–75.1 wt%) and high K2O contents. They display typical features of I‐type granites. The presence of hornblende and no muscovite and cordierite in the rocks further supports for I‐type character of granitoids. The emplacement age of the Muong Luan pluton obtained by LA–ICP–MS U–Pb zircon is at 242–235 Ma, corresponding to Indosinian time. Zircon εHf values of –5.6 to –10.4, in combination with moderate Mg values of 34–45 suggested that the Muong Luan granitoid was derived from partial melting of mafic crustal source rocks, which are probably Paleoproterozoic in age as revealed by Hf model ages (TDM2 = 1624–1923 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号