首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   

2.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

3.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

4.
A geochronological study of the Filicudi, Salina, Lipari and Vulcano Islands (Aeolian Archipelago) using the unspiked potassium–argon technique provides new age data which, combined with stratigraphic correlation, better constrain the temporal evolution of volcanism. The unspiked K–Ar age of the oldest exposed lavas on Filicudi, 219±5 ka, is significantly younger than the previous estimation of 1.02 Ma. In the general context of Aeolian volcanism, this new date suggests that the volcanism of the western sector of the Aeolian Archipelago is younger than previously thought. Geochronological data point out on the rapid transition from calc–alkaline to potassic volcanism. The distribution of the K–Ar ages within the Salina–Lipari–Vulcano group shows that the volcanism started on Lipari and propagated over time northward on Salina and southward on Vulcano. Geochronological and geophysical data suggest that the onset of volcanism in the central sector of the Aeolian Arc may be due to a mantle upwelling structure located below Lipari. A change in the style of the eruptions occurred in the Salina–Lipari–Vulcano system at about 100 ka from the present. Low-energy magmatic eruptions occurred between 188 and about 100 ka. From about 100 ka to the present, higher-energy eruptions and low-energy events due to magma–water interaction also occurred. This change in the style of activity, together with the appearance of evolved products (i.e. rhyolites) during the last 50 ka, is consistent with the formation of magmatic reservoirs located at shallower depth with respect to those of the 188–100-ka period. The new geochronological data and available petrological models reveal that a change in the deep source of the primary magmas occurred in a relatively short time interval.  相似文献   

5.
The Sakuma–Tenryu district consists mainly of pelitic and basic schists. Its metamorphic sequence has been divided into two units, the Shirakura and the Sejiri units. We carried out K–Ar analyses of phengite separates and X‐ray diffraction analyses of carbonaceous materials from the pelitic schists of both units. The age–d002 relationships show that the ages become older (66–73 Ma) in the Shirakura unit and younger (57–48 Ma) in the latter with increasing metamorphic temperature. The former has a positive relationship observed in the Sanbagawa meta‐Accretionary Complex (meta‐AC) (Sanbagawa metamorphic belt sensu stricto) in central Shikoku and the latter, a negative one in the Shimanto meta‐AC (a subunit of traditional Sanbagawa belt) of the Kanto Mountains. These contrasting age–temperature relationships are due to different tectonic styles relating to the exhumation of the metamorphic sequences. The duration from the peak metamorphism to the closure of the phengite K–Ar system was significantly different between the two metamorphic sequences: longer than 31 my in the Sanbagawa meta‐AC and shorter than 13 my in the Shimanto meta‐AC. The different natures of subducted plate boundaries may cause the different exhumation processes of metamorphic belts.  相似文献   

6.
We present 39Ar–40Ar dating of phengite, muscovite and paragonite from a set of mafic and metasedimentary rocks sampled from the high-pressure (HP) metaophiolites of the Voltri Group (Western Alps) and from clasts in the basal layer conglomerates from the Tertiary molasse which overlie the high-pressure basement. The white mica-bearing rocks display peak eclogitic and blueschist-facies parageneses, locally showing complex greenschist-facies replacement textures. The internal discordance of age spectra is proportional to the chemical complexity of the micas. High-Si phengites from eclogite clasts record a 39Ar–40Ar age of ca. 49 Ma for the eclogite stage and ca. 43 Ma for the blueschist retrogression; phengites from a blueschist basement sample yield an age of ca. 40 Ma; low-Si muscovite from a metasediment dates the formation of the greenschist paragenesis at ca. 33 Ma. Our data indicate that the analyzed samples reached high-pressure conditions at different times over a time-span of c.a. 10 Ma. Subduction was continuing during exhumation and blueschist retrograde re-equilibration of higher-pressure, eclogite-facies rocks. This process kept the isotherms depressed, allowing the older HP-rocks to escape thermal re-equilibration. Our results, added to literature data, fit a tectonic model of a subduction–exhumation cycle, with different tectonic slices subducted at different times from Early Eocene until the Eocene–Oligocene boundary.  相似文献   

7.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

8.
A geochronological study utilized the unspiked potassium–argon (K–Ar) technique to obtain ages from the two main volcanic members of the shield stage of the Waianae Volcano, HI. These new dates are further constrained using a combination of stratigraphic relationships, magnetostratigraphy and major element geochemistry. Exposed shield lavas encompass 0.85 Ma, with reliably dated tholeiitic lavas from the main shield ranging from 3.93±0.08 to 3.54±0.04 Ma, and a later shield stage ranging in age from 3.57±0.04 to 3.08±0.04 Ma. These data suggest that the total extent of Waianae shield activity was significantly more than 1 Ma. The age of faulting in two flank zones is constrained to be about 3.4 Ma. Preliminary estimates of lava accumulation rates vary from about 0.3 to 2.0 mm/a; calculated rates show no systematic variation with location in the volcano or with time.  相似文献   

9.
West Maui’s rejuvenated-stage Lahaina Volcanics were erupted from four discrete sites. New K–Ar ages indicate two pulses of volcanism, the older about 0.6 Ma and the younger about 0.4 Ma. Compositionally the lava flows are entirely basanitic, but each pulse is diverse. The underlying postshield-stage Honolua Volcanics were emplaced by about 1.2 Ma on the basis of previously published ages. Therefore the duration of volcanic quiescence prior to rejuvenation is about 0.6 m.y. at West Maui, much longer than estimated previously.  相似文献   

10.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

11.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   

12.
The Grande Découverte Volcanic Complex (GDVC), active since at least 0.2 Ma, is the most recent volcanic complex of the Basse-Terre Island (Guadeloupe, Lesser Antilles Arc). A detailed geochronological study using the K–Ar Cassignol–Gillot technique has been undertaken in order to reconstruct the history of effusive activity of this long-lived volcanic system. Twenty new ages permit to suggest that the GDVC experienced at least six main effusive stages, from 200 ka to present time. To the north of the GDVC, the GDS (Grande Découverte–Soufrière volcano) has been active since at least 200 ka, and to the south, the TRMF (Trois-Rivières–Madeleine Field), started to be emplaced 100 ka. Morphological investigations suggest that the whole TRMF volcanism was emitted from vents distinct from the GDS, most probably a large E–W fissure network linked to the Marie-Galante rift. The mean age of 62 ± 5 ka, obtained for the E–W Madeleine–Le Palmiste alignment suggests that a fissure-opening event occurred at that time. However, whole-rock major and trace element signatures are similar for both systems, suggesting that a common complex magma-plumbing system has fed the overall GDVC. We report very young ages for lava flows from the TRMF, which implies that < 10 ka volcanic activity is now identified for both massifs. Although hazards associated with such effusive volcanism are much lower than those associated with potential flank-collapse of the Soufrière lava dome or a magmatic dome eruption with explosive phases within the GDS, the emplacement of relatively large Holocene age lava flows (3–1 × 108 m3) suggests that a revised integrated volcanic hazard assessment for Southern Basse-Terre should now consider the potential for renewed future activity from two Holocene volcanic centers including the TRMF.  相似文献   

13.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

14.
We report the first 39Ar–40Ar ages from the three early basic shield-like massifs of Tenerife, Canary islands, and couple these with detailed major and trace element chemistry to constrain the nature and timing of the mantle melting processes. The massifs have chemically different sources, and independent evolutionary histories. The Teno and Roque del Conde massifs appear chemically to represent the products of single mantle melting cycles, with progressive decrease in mean melt fraction and increase in mean melting depth in younger rocks. The Teno massif (NW) was erupted in a short time period around 6.0–6.4 Ma, while at least the lower half of the Roque del Conde massif (SW) is older than 11 Ma. In contrast, the Anaga massif (NE) is polygenetic, with 39Ar–40Ar ages ranging from 8.0–4.2 Ma, and no simple stratigraphic chemical progression. These ages run counter to published suggestions of progressive younging of Canary shield stages to the southwest. Basic rocks in all three massifs are the result of much deeper melting and smaller melt fractions than equivalent units in Gran Canaria, but nevertheless the melting column must have extended significantly into the spinel facies, requiring substantial disruption of the local lithosphere. The age and melting relationships broadly support the mantle blob model for Canary magmatism proposed by Hoernle and Schmincke (Hoernle, K., Schminke, H.-U., 1993. The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J. Petrol. 34, 599–626). In all three massifs, extensive fractional crystallisation has taken place at crustal levels so that mean MgO contents are only some 6–7%. The fractionation sequence is olivine–clinopyroxene–magnetite in basaltic compositions, with the involvement of plagioclase, amphibole and apatite only to generate the infrequent more evolved hawaiites to benmoreites. Despite the abundance of basanitic magmas in the Tenerife older massifs, these follow a differentiation trend towards weakly undersaturated benmoreite rather than to phonolite. This probably reflects early crystallisation of magnetite, perhaps resulting from somewhat high oxygen fugacity. The chemical evidence for replenished magma chambers in Tenerife described by Neumann et al. (Neumann, E.R., Wulff-Oedersen, E., Simonsen, S.L., Pearson, N.J., Martí, J., Mitjavila, J., 1999. Evidence for fractional crystallisation of periodically refilled magma chambers in Tenerife, Canary Islands. J. Petrol. 40, 1089–1123) is a consequence of treating as a single cogenetic suite the products of several magmatic systems that differ in parental melt fraction.  相似文献   

15.
Abstract The Ryoke metamorphic belt in south-west Japan consists mainly of I-type granitoids and associated low-pressure/high-temperature metamorphic rocks. In the Yanai district, it has been divided into three structural units: northern, central and southern units. In this study, we measured the Rb–Sr whole-rock–mineral isochron ages and fission-track ages of the gneissose granodiorite in the central structural unit. Four Rb–Sr ages fall in a range of ca 89–87 Ma. The fission-track ages of zircon and apatite are 68.9 ± 2.6 Ma and 57.4 ± 2.5 Ma (1σ error), respectively. Combining the newly obtained ages with previously reported (Th–)U–Pb ages from the same unit, thermochronologic study revealed two distinctive cooling stages; 1) a rapid cooling (> 40°C/Myr) for a period (~7 Myr) soon after the peak metamorphism (~ 95 Ma) and 2) the subsequent slow cooling stage (~ 5°C/Myr) after ca 88 Ma. The first rapid cooling stage corresponds to thermal relaxation of the intruded granodiorite magma and its associated metamorphic rocks, and to the uplift by a displacement along low-angle faults which initiated soon after the intrusion of the magma. Uplift by the later stage deformation having formed large-scale upright folds resulted in progress of the exhumation during the first stage. The average exhumation velocity of the stage is ≥ 2 mm/yr. During the second stage, the rocks were not accompanied by ductile deformation and were exhumed with the rate of 0.1–0.2 mm/yr. The difference in the exhumation velocity between the first and second cooling stages resulted from the difference in the thickness of the crust and in the activity of ductile deformation between the early and later stages of the orogenesis.  相似文献   

16.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   

17.
Granitoids in the Hida region of Japan encompass two main rock types: younger type‐1 granites and older type‐2 granites. Sensitive high mass‐resolution ion microprobe (SHRIMP) U–Pb zircon dating of older type‐2 granites collected from the Tateyama area show similar ages of 245 ± 2 Ma and 248 ± 5 Ma for two gneissose granites, while a significantly younger intrusion age of 197 ± 3 Ma was determined for the younger type‐1 granites collected from the Hayatsukigawa River which belongs to the Okumayama pluton. A felsic gneiss sample (07HI‐3) collected from the right bank of the Hayatsukigawa River yielded multiple complex ages at 330 ± 6 Ma, indicating the timing of the Hida regional tectono‐thermal events that formed the Hida gneisses; 243 ± 8 Ma, representing the timing of intrusion of the augen granite; and 220 Ma, indicating the timing of regional dextral ductile shearing that caused a repeated recrystallization of metamorphic rocks in the study area. Considering the geochronological data, the rock types and assemblages, basement, and Sr–Nd isotopic constraints, we propose that the Hida Belt separated from the Jiamushi massif, which is located in the eastern margin of the Central Asian Orogenic Belt.  相似文献   

18.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

19.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   

20.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号