首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
本文简要地叙述了1990年7月30日伴随日面2B级光学耀斑发生的射电爆发,在2840、2640、和1420MHz波段上同步观测结果,其中包括射电爆发在以上波段的秒级时间轮廓和毫秒级时间尺度的spike辐射活动.对它们的形态和频率特征作了简要分析,同时对spike辐射的迴旋电子脉塞增长率、相对辐射频宽和准周期振汤的某些特征及辐射源区的某些物理参数,作了进一步的分析和量级的估算.  相似文献   

2.
本文介绍用“三波段太阳射电高时间分辨率同步观测系统”所观测到的1988年12月16日三波段(1420MHz、2840MHz、4000MHz)太阳射电大爆发中毫秒级精细结构的观测特征,指出太阳射电快速活动在射电爆发的不同阶段具有不同的特征,首先在爆发的上升沿出现2840MHz的毫秒尖峰辐射群,继而在1420MHz上出现毫秒级尖峰辐射群,并且还在以后的几个爆发次峰上陆续出现,在长达两小时的大爆发过程中,在4000MHz上始终未产生毫秒级尖峰辐射,这也反应了射电尖峰辐射现象存在着一定的带宽。特别引起注意的是毫秒级尖峰辐射群均出现在射电爆发的峰值附近,在其它时间的记录中尚未发现毫秒尖峰辐射。 三波段的秒级射电爆发曲线如图1所示。毫秒级精细结构如图2所示。由图2可见,单个尖峰辐射的持续随频率的减小而增加,2840MHz多为10—20ms,1420MHz多为30—170ms;所产生的尖峰辐射群强度不大,而且很少有孤立的尖峰;2840MHz尖峰辐射的强度一般为450—900sfu,1420MHz一般为500—1770sfu(1sfu=10~(-22)WM~(-2)Hz~(-1));还特别引起注意的是在2840MHz上当所出现的尖峰辐射群结束时,往往出现持续时间为100ms的流量下降现象,(此种现象在以往的观测中未曾见过),详见图2b和2c;关于事件尖峰辐射的丰度,仅对几个尖峰辐射群作了统计如下: 在1420M  相似文献   

3.
利用国家天文台云南天文台“分米波(700—1500MHz)射电频谱仪”和“四波段太阳射电高时间分辨率同步观测系统”分别于2001年6月24日和1990年7月30日观测到了两个稀少事件,前者是一个小射电爆发,其上升相伴随有短周期(约29、40和100毫秒)的脉动,后者是一个射电大爆发,在2840MHz上产生了周期约30毫秒的射电脉动,还着重讨论其甚短周期(如29—40毫秒)的脉动现象,甚短周期脉动可能是归因于起源在日冕深处不稳定区域的哨声波束周期链对射电辐射的调制,或沉降电子束驱动的静电高混杂波,经由波-波非线性相互作用导致甚短周期的射电脉动。  相似文献   

4.
从2004年10月起,国家天文台怀柔射电频谱仪增加了新的超高分辨率观测模式:在1.10~1.34 GHz频带其时间分辨率为1.25 ms,频率分辨率为4 MHz。报告了3个超高分辨率下观测到的太阳射电精细结构事件,包括射电尖峰辐射、鱼群结构和重叠的精细结构,在射电精细结构之后8~14 min,在米波段都发现射电II型爆发,3个事件的米波II型爆发(示踪着日冕激波)都有相关联的日冕物质抛射(Coronal Mass Ejection,CME)。  相似文献   

5.
太阳射电宽带动态频谱仪1.10~2.06 GHz、2.6~3.8 GHz、5.2~7.6 GHz从2000年~2005年同时在3个频段上观测到复杂型频谱事件(45C爆发:双峰或多峰结构,单频辐射流量小于500 sfu)158个,有139个事件对应高能事件,其中对应X级耀斑3个,对应M级耀斑86个,对应C级耀斑44个。36个爆发对应发生日冕物质抛射(Coronal Mass Ejection,CME)事件,29个事件对应有II型爆发,20个事件对应IV型爆发。在76个事件中显示了丰富的毫秒级精细结构,有尖峰辐射(Spike)、鱼群结构(Fish)、斑马纹结构(Zebra)、纤维结构(Fiber)、漂移脉动结构(DPS)、准周期振荡(QPPS)、M型结构以及II、III型爆发等。举两例说明复杂爆发的观测特征。  相似文献   

6.
耀斑研究的时变结构在射电波段已进入亚秒甚至毫秒级时标。微波段的尖峰辐射有高至10~(15)K的亮温度,硬X射线爆发也可能与电子加速过程有密切关系。1981年5月北京天文台第一次在十厘米波段取得微波爆发毫秒级的精细结构。1983年开始国内联合成立太阳射电爆发高时间分辨率研究课题协调组,并决定建立全国性的观测网。各有关单位设备的配置及计划见表1。该联测网将有从约2厘米波长到21厘米波长的大于10:1的波段覆盖。爆发的不同时标结构可能来自不同的机制,与光学高时间分辨的同时观测可能取得重要的结果,来间接证实精细结构尖峰源的位置。北台正在更新2840MHz的1ms采样设备;研制时间分辨率达约10微秒的十厘米波段多通道偏振计,可以轮流在2600 60MHz及2600-60MHz上相距10MHz的两点上同时接收,预计89年底至90年初投入观测;另一研制的设备为高速采样六厘米波段强度干涉仪,可发现日面上有无角径大于0.01"源的存在。云台已有1420,2840及4000MHz三波段同步观测设备,并将增加2160MHz的设备。紫台将使用13.7毫米波段天线进行高灵敏度的毫米波爆发高时间分辨观测研究。北京大学正在研制21厘米波段快速采样自相关频谱仪。各波段、各种形式的高时间分辨率的观测设备用时间同步系统联系起来。联测网的资料可进行如下研  相似文献   

7.
云南天文台高分辨率射电频谱仪观测到10毫秒级变周期振荡,带宽约10MHz,叠加在一个持续时间约500ms的射电频谱上.在德国Weissenau的太阳射电频谱记录上找到了对应的爆发;同时SESC(美国空间环境服务中心)发表了同一时刻获得的245MHz总强度射电爆发记录;还在日面城到了相应的H_α亮点.  相似文献   

8.
通过分析云南天文台(YNO)0.7~1.5GHz太阳射电频谱仪2000年9月至2001年9月取得的158个射电爆发、发现其中约有65%存在4类不同类型的快速精细结构(FFS);毫秒类峰辐射、Ⅲ型爆发、准周期脉动,慢漂移结构。给出了其中6个典型精细结构的介绍和相关的初步解释。  相似文献   

9.
综述云南天文台在太阳活动22周峰年期间观测到的米波射电频谱资料,和在处理资料时 一些共生毫秒级Spike的Ⅲ型爆发,它们的不同形态提示了Ⅲ型爆发和毫秒级Spike的发生关系。通过两个典型事件的分析,根据Spike和Ⅲ型爆发出现的 时序以及形态的连续和转换特性,证实了日冕电子加速区位于毫秒级Spike爆发和Ⅲ型爆发的源区之上,由观测指出Ⅲ型爆发对应的界面频率是位于250MHz附近,并试图用等离子假设  相似文献   

10.
本文介绍了在1981年5月16日微波大爆发中毫秒级时间轮廓Spike辐射中发生的准周期振荡现象。这种准周期振荡可能与日面活动区磁杯中的阿尔芬波运动有关,由此我们可以得到爆发源区一些基本物理条件。最后对于准周期振荡现象对Spike辐射的作用和影响作了简单的讨论。  相似文献   

11.
本文分析了云南天文台四波段快速采样射电望远镜在1990年1月至1991年3月间记录到的毫秒级尖峰辐射事件。结合此期间S.G.D.公布的米波射电大爆发资料,给出了毫秒级尖峰辐射的各种特征,总结出毫秒级尖峰辐射同Ⅲ型、Ⅱ型和Ⅳ型太阳射电爆发的关系,最后做出了相应的解释和讨论。  相似文献   

12.
10 m波段的太阳射电观测,对监测日冕物质抛射(Coronal Mass Ejection,CME)有着重要的意义。介绍了一种安装在太阳射电天线阵的模拟接收机,工作频率范围是30~65 MHz,用于监测太阳10 m波的爆发活动。接收机采用直接采样的结构,由巴伦、滤波器和放大器组成。研制完成的接收机,增益达到60 d B,动态范围约33 d B,输入三阶互调点IIP3=-24 d Bm,噪声系数N=4.3 d B,满足观测要求。最后,计算了太阳射电天线阵的最小可测流量密度。  相似文献   

13.
本文对1989年4月9日在2840 MHz上观测到的微波爆发进行分析,发现该爆发存在几十到几百秒的准周期振荡现象。这种现象可能与磁环的准周期现象有关,应遵从磁流体力学规律。通过简单初步分析,获得一些有意义的结果。  相似文献   

14.
比较了12个日冕物质抛射(CME)事件, 发现它们可以分为两类, 其中分别是快速(>1000 km/s)和慢速(≤800 km/s)各6个事件, 发现这2类CME事件分别对应于不同的多波段射电辐射类型和不同的日冕磁位形.本文定性地分析了这二个类型的射电爆发的产生过程,指出多重磁极和双磁极结构可能是分别产生二类CME和二类多波段射电爆发类型的原因,并涉及到"磁崩溃"模型与多重磁结构的关系.讨论了CME的不同速度可能是造成多波段不同射电爆发的主要因素,并指出快速或慢速的CME可能取决于日冕的多重或双重磁结构.  相似文献   

15.
黄光力  毛定一 《天文学报》1997,38(4):379-385
本文采用几何光学近似,研究在日冕条件下,沿着磁场传播的电磁波产生非线性自调制不稳定性的可能.发现只有分米波和米波段的射电爆发,可以在日冕外层产生纵向和横向的自调制不稳定性.而在其它波段,如光学、X射线和高频电磁波,则不会产生这样的非线性不稳定性过程.由纵向自调制不稳定性产生的精细结构具有包络孤波的形状.  相似文献   

16.
Ⅱ型射电暴是日冕物质抛射(Coronal Mass Ejections, CME)的最佳示踪器,当日冕物质抛射的速度超过本地阿尔芬速度时,会产生日冕激波或行星际激波,并对地球的磁层产生十分剧烈的影响,在射电波段观测到Ⅱ型射电暴也就意味着观测到了日冕激波,预测激波到达地球的时间,是空间天气预报的重要内容之一。2021年9月28日06:20 UT左右,奇台低频射电阵列(Qitai Low-Frequency Radio Array, Qitai LFRA)首次探测到一次Ⅱ型射电暴爆发事件,频率覆盖范围为18~50 MHz,持续时间10多分钟。由于在极低频(<40 MHz)频段还没有进行过具有有效空间分辨率的观测,未来在这个频段发现未知现象的可能性极大。观测结果表明,奇台低频射电阵列性能良好(增益典型值6 dBi)、灵敏度高(-78 dBm/125 kHz,动态范围72 dB),可以在25周太阳活动峰年发挥独特作用。  相似文献   

17.
通过分析云南天文台(YNO)0.7~1.5GHz太阳射电频谱仪2000年9月至2001年9月取得的158个射电爆发,发现其中约有65%存在4类不同类型的快速精细结构(FFS):毫秒尖峰辐射、Ⅲ型爆发、准周期脉动、慢漂移结构。给出了其中6个典型精细结构的介绍和相关的初步解释。  相似文献   

18.
本文分析了2002.7.23国家天文台云南天文台射电频谱仪在625~1500 MHz、2600~3800 MHz和5200~7600 MHz记录到的复杂型大爆发,将此爆发与Hα耀斑、日冕物质抛射(CME)、硬X射线爆发及地球物理参数作了相关分析,得到这个事件的一些显著特征,认为这一事件电子的加速区在日冕的外层,接近625 MHz的地方,并且多次发生磁重联.磁重联以后的衰变相是湍流加速过程.  相似文献   

19.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型爆发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段射电辐射和太阳物质抛射等)观测资料的分析,定性地探讨了WLF的起源、加热机制和发射地点的问题.假设了WLF和射电运动IV型射电爆发可能有共同起源的低日冕电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热电子沉降能量于色球层,产生色球层的压缩波或向下的辐射场进而使上光球层温度增加导致WLF此外,提出WLF可能会伴有耀斑后环和射电精细结构的对应物.  相似文献   

20.
快速射电暴是近几年观测到的一种在射电波段短暂出现的高能天体物理爆发现象。它们的光变曲线通常表现为单个脉冲轮廓,持续时间一般为若干毫秒,大部分峰值流量密度可达到央斯基量级。对快速射电暴研究概况进行了评述,系统描述了快速射电暴的观测进展,介绍了已提出的快速射电暴前身星物理模型及快速射电暴在天体物理领域中的应用等,也对快速射电暴的未来研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号