首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
PALEOGENE(?) DEPOSYSTEMS AND BASIN EVOLUTION IN THE EASTERN TIBETAN PLATEAU: NANGQIAN AND XIALAXIU BASINS  相似文献   

2.
The GanziLitang fault zone, an outstanding tectonic element in the eastern Tibetan Plateau has been intensively debated as an in-situ suture zone marking relict of a subducted Palaeo-Tethyan oceanic crust or a failed intracontinental rift. This paper reports the garnet amphibolites discovered along the Ganzi–Litang fault zone, eastern Tibetan Plateau. These garnet amphibolites are characterized by the garnet–hornblende–rutile–sphene–plagioclase–quartz assemblage. Conventional geothermobarometry figures out the metamorphic temperature and pressure conditions at 582–626°C and 1.61–1.82 GPa, respectively. Geochemical analysis (no Nb–Ta deletions and left-inclined to flat patterns of rare-earth elements) indicates that the garnet amphibolites could represent metamorphic product of the mid-ocean-ridge (MORB)-type mafic rocks that were contaminated by a mantle plume. The protolith of the garnet amphibolites was dated at 236 Ma using in-situ U–Pb zircon method, and the retrograde metamorphism was dated at 218 Ma using in-situ U–Pb sphene method. A comprehensive analysis combined with the development of the Palaeo-Tethys Ocean and the Yidun arc through geologic time indicates a Triassic to Early Jurassic age (236–195 Ma) for the metamorphism of the garnet amphibolites. The low geothermal gradient of 9.8ºC/km and the N-MORB nature of the garnet amphibolites suggest a subduction-zone environment for the high-pressure metamorphism. Therefore, the GanziLitang fault zone is a Palaeo-Tethyan suture separating the Yidun arc and the Songpan–Ganzi terrane, representing the relics of a branch of the Palaeo-Tethys Ocean that was contaminated by a mantle plume.  相似文献   

3.
刘祥  詹琼窑  朱弟成  王青  谢锦程  张亮亮 《岩石学报》2021,37(11):3513-3526
碎屑锆石年代学不但能够限定地层沉积开始的最大时限,还能为示踪沉积物源区提供关键信息。中国西南部的松潘-甘孜褶皱带广泛出露一套巨厚的三叠纪复理石沉积,其物源区和可能存在的同期抬升与剥蚀历史并未得到很好约束。本文获得的松潘-甘孜褶皱带南部雅江地区上三叠统四套地层(由老至新分别为侏倭组、新都桥组、两河口组和雅江组)5件砂岩样品的碎屑锆石U-Pb年龄和锆石Hf同位素数据表明,最年轻锆石年龄指示侏倭组从~229Ma后开始沉积,新都桥组则从~223Ma后开始沉积。碎屑锆石年龄频谱图显示四套地层都具有中奥陶世-早泥盆世(465~398Ma)和中二叠世-晚三叠世(271~225Ma)的年龄峰。除两河口组外的其他三套地层还具有较强的古元古代(1.90~1.86Ga)和新元古代(872~712Ma)的年龄峰。锆石Hf同位素显示松潘-甘孜褶皱带南部上三叠统小于300Ma的锆石颗粒主要来自峨眉山大火成岩省和义敦岩浆弧。本文物源区示踪结果表明,华南板块和义敦地体可能为松潘-甘孜褶皱带南部地层的主要物源区。晚三叠世由于周缘地体的强烈汇聚,松潘-甘孜褶皱带在小于~18Myr的时间内经历了快速的隆升和剥蚀作用,剥蚀产生的碎屑物质被搬运至四川盆地的西缘再沉积。  相似文献   

4.
Cenozoic strata in the Wuyu Basin record the tectonic evolution of the southern Tibetan Plateau. Here, we use detrital zircon isotope data and paleocurrents based on petrographic and sedimentary facies analyses to constrain the provenance of sediments in the Wuyu Basin. On this basis, we recognize multiple phases of tectonic activity in the southern Tibetan Plateau since the Miocene. Tectonic activity at ca. 15 Ma ended the lacustrine sedimentary facies of the Mangxiang Fm. and caused volcanic eruptions; the Wuyu Basin received deposits of the Laiqing Fm. dominated by volcanic and pyroclastic rocks. Tectonic activity at ca. 8 Ma resulted in the volcanic and pyroclastic rocks of the Laiqing Fm. becoming one of the main provenances for the overlying Wuyu Fm. The lacustrine environment in the Wuyu Basin ended again and shifted to braided river sedimentation, the paleocurrent directions changed from northward to southward, and the central Lhasa subterrane became one of the main provenances at ca. 2.5 Ma. By comparing the detrital zircon ages of our samples in the Wuyu Basin and sands from the Lhasa River, we infer that a long river comparable to the modern Lhasa River existed in the Wuyu Basin area at ca. 2.5 Ma. During the Quaternary, due to the consistent convergence between the Indian and Eurasian plates, the eastern Gangdese Mountains uplifted, which resulted in the blocking of this river and the development of the current geomorphic features in the Wuyu Basin area.  相似文献   

5.
With the aim of better understanding the history of ocean closure and suturing between India and Asia, we conducted a geologic investigation of a siliciclastic matrix tectonic mélange within the western Yarlung suture zone of southern Tibet (Lopu Range region, ~ 50 km northwest of Saga). The siliciclastic matrix mélange includes abundant blocks of ocean plate stratigraphy and sparse blocks of sandstone. Metapelite and metabasite blocks in the mélange exhibit lower greenschist facies mineral assemblages, indicating that they were not deeply subducted. We obtained detrital zircon U-Pb geochronologic and sandstone petrographic data from sandstone blocks in the mélange and sandstone beds from Tethyan Himalayan strata exposed to the south of the suture. The sandstones from both units are all similar in U-Pb detrital zircon age spectra and petrography to the nearby Tethyan Cretaceous–Paleocene Sangdanlin section, which records the earliest appearance (at ~ 59 Ma) of arc-affinity strata deposited conformably on Indian-affinity strata. Two Paleocene sandstones, one of which is a schistose block incorporated in the siliciclastic matrix mélange, yielded indistinguishable maximum depositional ages of ~ 59 Ma. Mesozoic Asian-affinity sandstone blocks previously documented in the siliciclastic matrix mélange 200–500 km along strike to the east are notably absent in the Lopu Range region. We documented a gradational transition in structural style from the block-in-matrix mélange in the northeast to the south-vergent Tethyan thrust belt in the southwest. Blocks of Tethyan Himalayan strata increase in size and the volumetric proportion of matrix decreases from northeast to southwest. We conclude that no arc-affinity sandstone blocks were incorporated into the subduction complex until India-Asia collision at ~ 59 Ma when the Xigaze forearc basin became overfilled and Tethyan Himalayan strata entered the trench. As collision progressed, there was a gradual transition in structural style from block-in-matrix mélange formation to imbricate-style thrust belt formation.  相似文献   

6.
可可西里西段羊湖盆地沉积、构造特征及其动力学意义   总被引:1,自引:0,他引:1  
对可可西里西段新生代盆地缺乏了解是导致该区新生代地质演化存在争议的重要原因.本文以沉积学和构造变形分析为主要手段,对可可西里西段羊湖盆地时代、充填序列、物源区和变形特征进行了分析,结果表明,羊湖盆地新生界沉积厚度大于1302m,主要由下部雅西错组冲积扇相碎屑岩和上部五道梁群湖泊相碳酸盐岩组成,其岩石组合和充填序列与可可西里东段具有一致性,同时古流向和碎屑锆石U-Pb年代学分析显示盆地物源来南部的羌塘地块,盆地形成演化受南部褶皱冲断带制约,盆地构造变形强烈,沿褶皱冲断带和羊湖盆地地壳分别发生51%和41%的缩短.沉积充填结构和变形特征表明,羊湖盆地与东段可可西里盆地具有相同的演化历史和性质,预示青藏高原中部在渐新世-中新世在存在一个大的、统一的可可西里盆地.  相似文献   

7.
义敦岛弧南段的格咱火山-岩浆弧的东西斑岩带在成矿期次、成矿作用等方面存在较大差异性,二者之间是否有大型构造单元的存在,与东部代表洋壳消减的甘孜-理塘主蛇绿混杂岩带关系如何等一直是悬而未决问题。研究发现,区内存在由断续出露镁铁-超镁铁堆积杂岩,以及尼汝组玄武岩、硅质板岩和复理石、灰岩等岩片组成的红山-属都蛇绿混杂岩带,属于甘孜-理塘洋壳早期俯冲残留次级蛇绿混杂岩带,与主蛇绿混杂岩带及格咱火山-岩浆弧构成了本区构造格架。其中,红山-属都蛇绿混杂岩带将格咱弧分为东西两个斑岩成矿带。本蛇绿混杂岩带的厘定,为进一步研究甘孜-理塘洋范围、俯冲时限、构造演化、甘孜-理塘洋是否存在两次俯冲,及格咱弧东西斑岩带成矿规律提供了基础资料,并对指导区域找矿具有一定意义。  相似文献   

8.
The Triassic strata in the Turpan-Hami Basin potentially chronicled the missing sedimentary record of Indosinian tectonic evolution in the Eastern Tianshan. In this study, we conducted detrital zircon U-Pb geochronological analyses on subsurface Triassic samples collected from the Turpan-Hami Basin to unravel sedimentary response of Indosinian tectonic reactivation and its geodynamics. The detrital zircon age spectra of the Triassic samples are quite different, reflecting significant provenance variability. The zircon grains in the Lower Triassic sample were mainly from the Central Tianshan, while the Jueluotag acted as a minor provenance. By contrast, the Late Paleozoic rocks in Jueluotag act as the main provenance for the Middle-Upper Triassic samples, while the Central Tianshan acted as a minor provenance. Furthermore, zircon grains in the Middle Triassic sample were mainly from the Permian rocks in Jueluotag, while Indosinian strike-slip-driven rapid exhumation brought deeper Carboniferous rocks of Jueluotag as an important age population for the Upper Triassic sample. The inter-sample variability of age spectra of the Triassic samples provides sedimentary evidence for Indosinian tectonic reactivation in the Eastern Tianshan and its periphery, which could be attributed to differential exhumation of different sources driven by coeval strike-slip tectonics along deep faults. The Indosinian tectonic behavior in the Eastern Tianshan, which is characterized by partial melting of the pre-thickened crust and strike-slip deformation, acted as a far-field respond to the coeval continental accretion occurring along the southern Eurasian margin. Additionally, our new detrital zircon data, together with previously published data in the Turpan-Hami Basin, demonstrate that there are significant changes in source-to-sink system from the Permian to the Triassic, suggesting that the Permian-Triassic unconformity in the Eastern Tianshan and its periphery was generated by Late Permian-Early Triassic tectonic contraction and inversion rather than an increasingly arid climate.  相似文献   

9.
《地学前缘(英文版)》2020,11(5):1533-1548
The Chinese North Tianshan(CNTS) in the southern part of the Central Asian Orogenic Belt(CAOB) has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519) from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%) lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed "Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon E_(Hf)(t) values have increased since ~408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zircon ε_(Hf)(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.  相似文献   

10.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

11.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

12.
沉积物中的锆石裂变径迹分析可以用于示踪沉积盆地的源区性质及其构造演化信息。济阳坳陷新生界9块砂岩样品的锆石裂变径迹中值年龄介于183.1±15.0 Ma~100.0±5.6 Ma之间,锆石单颗粒年龄均大于其地层沉积年龄。对没有通过χ2检验的6块样品进行了多组分年龄分离分析,表明多数样品主要由2个年龄组分组成。总体上,砂岩锆石裂变径迹单组分年龄具有较好的一致性,主要介于389.1±5.1 Ma~272.7±14.6 Ma(P1)、238.1±7.8 Ma~203.6±6.6 Ma(P2)、179.3±13.9 Ma~96.8±17.8 Ma(P3)、80.3±15.7 Ma~55.3±6.0 Ma(P4)之间。这4组年龄组分分别记录了晚古生代、三叠纪、晚侏罗-早白垩世及晚白垩世-古新世时期内锆石裂变径迹完全退火时的年龄。结合区域地质背景认为,济阳坳陷新生界的主要物源是燕山运动中期强烈的构造岩浆活动期内发育的上侏罗统-下白垩统的火山岩和火山-碎屑岩系; 海西期、印支期以及燕山晚期-喜马拉雅山早期过渡时期的构造岩浆活动也对坳陷有少量物源贡献。  相似文献   

13.
在“三江”地区,“黑矿型”块状硫化物矿床和矿点均分布于义敦岛弧带上。该岛弧具典型的沟—弧—盆体系,在垂直岛弧方向上自东而西可分为4个带:甘孜—理塘缝合带(古海沟);雀儿山—稻城弧前区(弧—沟间断);赠科—乡城火山弧区;勉戈—热达弧后区。研究表明,义敦岛弧是一个建筑于从扬子准地台边缘分裂出来的大陆裂谷堑垒体系的基础上,经历了压张交替、升降更迭的复杂历史的张性火山岛弧,是由于甘孜—理塘微板块在晚三叠世诺利克期向西陡深俯冲形成的。在其发展历史中出现岛弧裂谷阶段和相伴的“双峰式”火山活动是该岛弧最重要的特点,为“黑矿型”块状硫化物矿床的成矿造就了有利的构造—火山条件。  相似文献   

14.
《Gondwana Research》2014,25(3):1216-1229
Fission track (FT) dating of detrital titanites, zircons and apatites combined with sandstone petrography from rocks of the Rovuma Basin was used to constrain the basin's provenance and its post depositional thermal history. A comparison of metamorphic basement and sedimentary titanite and zircon FT data indicates that erosion was localized along a zone which followed the margin of the Rovuma Basin and was the source for the late Jurassic to Cretaceous sandstones. Time–temperature models of apatite FT data show, that after the deposition, the sandstones were heated up to temperatures of ca. 60–110 °C most likely due to a combination of intensified regional heat flux and burial heating caused by fast sedimentation in a transtensional pull-apart setting and intensified by regionally elevated heat flux. The utter western part of the basin was inverted between ca. 60 and 40 Ma, concordant with the drop in the global eustatic sea level which led to a rearrangement of the source-to-sink system. Some reworked zircons were deposited in the Cenozoic strata in the eastern part of the basin.  相似文献   

15.
《地学前缘(英文版)》2020,11(6):1975-1992
The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt (CAOB) is poorly understood. Here we present zircon U–Pb geochronology, whole rock geochemistry, and Sr-Nd-Hf isotope data of the early Paleozoic granitoids in eastern CAOB to investigate the petrogenesis and geodynamic implications.The early Paleozoic granitoids from the Songnen Block yield zircon U–Pb ages of 523–490 ​Ma, negative εNd(t) values of –6.7 to –0.8, and εHf(t) values of –8.6 to 7.1, indicating they were generated by partial melting of ancient crustal materials with various degrees of mantle contribution. They generally show affinities to A-type granites, implying their generation from an extensional environment after the collision between the Songnen and Jiamusi blocks. In comparison, the early Paleozoic granitoids from the Xing’an Block have zircon U–Pb ages of 480–465 ​Ma, εNd(t) values of –5.4 to 5.4, and εHf(t) values of –2.2 to 12.9, indicating a dominated juvenile crustal source with some input of ancient crustal components. They belong to I-type granites and were likely related to subduction of the Paleo-Asian Ocean. The statistics of TDM2 Hf model ages of the granitoids indicate that the Erguna and Jiamusi blocks contain a significant proportion of Mesoproterozoic crystalline basement, while the Xing’an Block is dominated by a Neoproterozoic basement.Based on these observations, the early Paleozoic evolutionary history of eastern CAOB can be divided into four stages: (1) before 540 ​Ma, the Erguna, Xing’an, Songnen, and Jiamusi blocks were discrete microcontinents separated by different branches of the Paleo-Asian Ocean; (2) 540–523 ​Ma, the Jiamusi Block collided with the Songnen Block along the Mudanjiang suture; (3) ca. 500 Ma, the Erguna Block accreted onto the Xing’an Block along the Xinlin–Xiguitu suture; (4) ca. 480 Ma, the Paleo-Asian Ocean started a double-side subduction beneath the united Erguna–Xing’an and Songnen–Jiamusi blocks.  相似文献   

16.
Four K-feldspar samples from the Yidun Arc, eastern Tibetan Plateau, were analysed by the 40Ar/39Ar method with the aim of recovering information on their thermal history using multiple diffusion domain (MDD) theory. Arrhenius plots for each of the samples reveal low retentivity early in the heating experiments, a property that is attributed to their recrystallised nature. This low argon retentivity appears to violate the MDD assumption that volume diffusion is the only mechanism for argon transport within the crystals, thus the thermal histories derived from these analyses are considered suspect. Nevertheless, the age spectra themselves suggest that the majority of samples had cooled below ∼200 °C prior to the Eocene collision of India with Asia. Thermal history modelling from apatite fission track analyses from the same and nearby samples shows slow cooling through the apatite fission track partial annealing zone during the Cenozoic in samples from the high elevation, low relief areas of the Yidun Arc, while samples from the major Jinsha River valley show rapid cooling through the partial annealing zone beginning in the Miocene. These results suggest that significant Cenozoic denudation has been localised and that most parts of the Yidun Arc have experienced very little denudation during the Cenozoic.  相似文献   

17.
Amy L. Weislogel 《Tectonophysics》2008,451(1-4):331-345
The Middle to Late Triassic deep-water deposits that form the Songpan-Ganzi complex (SGC) of central China comprise an estimated ~ 2.0 × 106 km3 of detrital material that accumulated in the northeasternmost branch of the Paleotethys. A review of existing data demonstrates significant spatial and temporal variations in the stratigraphic and petrologic character of these turbidites. These variations are used to divide the complex into different depocenters: a northeastern depocenter (SGC-NE), a eastern–central depocenter (SGC-EC) and a northwestern depocenter (SGC-NW). Turbidite strata of the SGC-NE and SGC-EC zones of the Songpan-Ganzi complex are linked to the collision of the North China and South China blocks, whereas turbidite strata of the SGC-NW area are likely to be more closely affiliated with evolution of the Kunlun deformation belt. To test the validity of the Songpan-Ganzi stratigraphic framework and interpretations of its tectonostratigraphic evolution, sixty-eight U–Pb zircon ages were determined from five samples of felsic intrusive igneous rock, two samples from felsic plutonic rock of the adjacent Yidun arc complex, and one sample of volcanic rock interbedded with Middle Triassic turbidites of the SGC using the Sensitive High Resolution Ion Microprobe-Reverse Geometry (SHRIMP-RG). Together these data indicate primarily Late Triassic (~ 214–211 Ma) felsic magmatism in the SGC, with some indication of magmatic activity beginning as early as Middle Triassic (220 Ma). Zircon ages from the Yidun arc complex support Middle–Late Triassic magmatism from 225–215 Ma, prior to deformation of the SGC, suggesting deformation of the SGC was not related to subduction of the SGC substrate southwestward beneath the Yidun arc. Inherited Neoproterozoic (880–740 Ma) zircon ages found in two samples from the SGC-EC indicate either inheritance of zircon crystals from the surrounding SGC turbidite strata or possibly involvement of South China basement during crustal thickening and magma genesis.  相似文献   

18.
The Hoh Xil Basin is the largest Cenozoic sedimentary basin in the hinterland of the Tibetan Plateau. Tertiary sedimentary strata 5.8 km thick, comprising the Fenghuoshan, Yaxicuo and Wudaoliang groups, provide compelling evidence concerning the crustal shortening, erosion and peneplanation of the northern Tibetan Plateau. The basal Fenghuoshan and overlying Yaxicuo groups span the Eocene-Early Oligocene stratigraphically, and have been dated by magnetostratigraphy as 56–30 Ma old. Both groups are composed of terrigenous rocks. Provenance analysis of sandstones and conglomerates demonstrates that Permian and Triassic strata in the Tanggula Orogenic Zone in the south were the source for the Fenghuoshan Group. In contrast, the Carboniferous–Triassic strata in the Tanggula, Bairizhajia, and Heishishan-Gaoshan orogenic zones in the north, were the source for the Yaxicuo Group.During the Late Oligocene, northern Tibet underwent strong north–south crustal shortening (∼43%) and thickening. Extensive erosion, which occurred over the entire plateau surface near the end of the Oligocene, resulted in development of a peneplain surface. The latter is overlain by the Early Miocene Wudaoliang Group, composed of fresh water limestones. These are exposed both on summit surfaces, as well as on the valley floors, showing that a phase of differential uplift occurred after the deposition of the Wudaoliang Group. This post-Miocene differential uplift was due to regional extension, in a region of overall shortening. Even though we have not succeeded in obtaining conclusive data about the exact timing of phases of rapid uplift of the Tibetan Plateau, it is most likely that the major phase of uplift occurred during the Late Oligocene.  相似文献   

19.
程俊  石卫刚  翟杰  李海波  刘江华 《地质通报》2016,35(9):1472-1478
综合露头剖面、砂岩碎屑组分、地球化学、阴极发光等资料的研究,对西藏白朗地区南部三叠系沉积环境及物源开展了研究。该区三叠纪地层以灰黑色泥岩、浅灰白色石英砂岩、长石石英砂岩、灰色灰岩为主,沉积背景为拉轨岗日被动陆缘盆地的浅海-半深海环境。碎屑岩及其地球化学分析结果反映,物源总体来自克拉通内部。阴极发光结果表明,物源区石英主要为变质成因,次为火成岩成因。综合判定,研究区该套地层为下—中三叠统吕村组和上三叠统涅如组,物源区来自南部高喜马拉雅基底杂岩带。  相似文献   

20.
柴达木盆地西部新生代沉积演化特征   总被引:3,自引:1,他引:2       下载免费PDF全文
藏北高原的柴达木盆地保存有完整的新生代沉积地层,通过对柴西茫崖凹陷背斜北东翼长尾台剖面详细的野外测量,结合室内薄片鉴定,研究了该剖面岩石组构、沉积构造、沉积相、岩石组合特征,划分了各组基本层序,分析了其旋回特征。最后,系统总结新生代地层的整体沉积演化特征,试图通过这些特征来揭示该地区整个新生代的沉积环境演化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号