首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isotopic and geochemical data of the Zerenda series metamorphic rocks from the Kokchetav massif are reported. Some of these rocks contain microdiamond inclusions in garnets and other indicators of ultrahigh pressure metamorphism (P > 40 kbar, T = 900–1000 °C). The diamond-bearing rocks exhibit distinctive geochemical characteristics compared to typical crustal rocks. The REE patterns range from LREE depleted to slightly LREE enriched [chondrite normalized (La/Yb)N– 0.1–5.4] with a negative Eu anomaly. They are depleted in incompatible elements (e.g. Sr, Ba, U, Th) with respect to the upper crust. In contrast non-diamondiferous rocks of the Zerenda series exhibit normal crustal geochemistry. All rocks of the Zerenda series have very radiogenic lead isotopes. The measured μ values (238U/204Pb) compared with those calculated for the interval between crust formation and ultrahigh pressure (UHP) metamorphism suggest a decrease by factors of up to 200 during the UHP metamorphism. The Sm-Nd mineral isochrons from the diamond-bearing rocks and other rock types of the Zerenda series give a Middle Cambrian (524–535 Ma) age of metamorphism. The Nd model ages show that crust formation occurred about 2.3 Ga ago. Significant fractionation of Sm and Nd and loss of incompatible elements may be due to partial melting of the protoliths. The Ar-Ar age determinations of secondary biotite and muscovite from the diamond-bearing rocks yield an age of 517 ± 5 Ma. This cooling age requires a short time interval between UHP metamorphism and uplift to a crustal level. Ultrahigh pressure metamorphism might be a significant source of Pb for the mantle. We propose that the radiogenic Pb of the oceanic array is the contamination traces of numerous UHP events. Beside the geological aspect we demonstrate a method of dating a high grade metamorphic terrain using Nd isotopes. We compare whole rock isochrons and mineral isochrons and in this way get some insight into the behaviour of the Sm-Nd system during very high grade metamorphic events. Received: 14 August 1998 / Accepted: 1 June 1999  相似文献   

2.
Spinel-anthophyllite rocks that may be classified as ultrabasic low-Ca spinel amphibolites have been first discovered in the Kokchetav collision zone (northern Kazakhstan). They outcrop 2 km west of Enbek-Berlyk Village among schists and quartzites and are closely associated with spinel harzburgites and garnet pyroxenites. The main hosted minerals are spinel (hercynite) and anthophyllite. The rocks bear magnetite-hornblende-spinel-anthophyllite pseudomorphs with rounded and polygonal sections, which might have been resulted from the replacement of garnet grains. The prismatic anthophyllite crystals and scarce olivine relics contain elongate parallel spinel inclusions resembling spinel-olivine syntactic intergrowths in the Enbek-Berlyk spinel harzburgites. The spinel-anthophyllite rocks are similar to the associated spinel harzburgites in CaO, MnO, SiO2, and Al2O3 contents but are richer in FeO and poorer in MgO (F = FeO/(FeO + MgO) = 57% against 35% in the harzburgites). Geological, mineralogical, and geochemical data suggest that the spinel-anthophyllite rocks formed during the isochemical contact metamorphism of garnet-bearing spinel harzburgites, which contained more FeO and less MgO than garnet-free harzburgites of the same area. Variations in FeO and MgO contents in both types of harzburgites seem to be due to different chemical compositions of the chlorite protoliths of these rocks.  相似文献   

3.
采用同步辐射光源和金刚石对顶砧(DAC)技术,对天然菱铁矿的压缩性和电子结构进行了原位X射线衍射(XRD)和X射线吸收近边结构谱(XANES)测试研究。在室温下随着压力逐渐升高至50.2 GPa,菱铁矿保持方解石型结构不变,但是逐渐向Na Cl型结构转变;刚性[CO3]2-基团平行于ab-平面定向排列使c轴的压缩性大于a轴。菱铁矿在44.6~47.1 GPa之间发生电子由高自旋态(HS)向低自旋态(LS)的转变,表现为体积塌陷8%。HS菱铁矿的等温状态方程参数为K0=112(5)GPa和K'0=4.6(3)。首次采用XANES技术对菱铁矿中Fe2+的电子结构进行了研究,结果表明:随着压力升高至37.3 GPa,Fe2+的配位和局域对称并未发生明显变化;此后电子结构开始转变,Fe2+的3d轨道分裂能降低,电子跃迁概率增大,呈现LS特性。  相似文献   

4.
The unit-cell dimensions and crystal structure of sillimanite at various pressures up to 5.29 GPa have been refined from single-crystal X-ray diffraction data. As pressure increases, a and b decrease linearly, whereas c decreases nonlinearly with a slightly positive curvature. The axial compression ratios at room pressure are βabc=1.22:1.63:1.00. Sillimanite exhibits the least compressibility along c, but the least thermal expansivity along a (Skinner et al. 1961; Winter and Ghose 1979). The bulk modulus of sillimanite is 171(1) GPa with K′=4 (3), larger than that of andalusite (151 GPa), but smaller than that of kyanite (193 GPa). The bulk moduli of the [Al1O6], [Al2O4], and [SiO4] polyhedra are 162(8), 269(33), and 367(89) GPa, respectively. Comparison of high-pressure data for Al2SiO5 polymorphs reveals that the [SiO4] tetrahedra are the most rigid units in all these polymorphic structures, whereas the [AlO6] octahedra are most compressible. Furthermore, [AlO6] octahedral compressibilities decrease from kyanite to sillimanite, to andalusite, the same order as their bulk moduli, suggesting that [AlO6] octahedra control the compression of the Al2SiO5 polymorphs. The compression of the [Al1O6] octahedron in sillimanite is anisotropic with the longest Al1-OD bond shortening by ~1.9% between room pressure and 5.29 GPa and the shortest Al1-OB bond by only 0.3%. The compression anisotropy of sillimanite is primarily a consequence of its topological anisotropy, coupled with the compression anisotropy of the Al-O bonds within the [Al1O6] octahedron.  相似文献   

5.
6.
van Roermund  & Drury 《地学学报》1998,10(6):295-301
We report here for the first time the occurrence of relics of majoritic garnet within orogenic garnet peridotites from Otrøy, Western Gneiss Region, Norway. The microstructural evidence consists of two-pyroxene exsolution from garnet. Majoritic garnets are only stable at depths greater than 150 km. Estimates of the initial composition of the majoritic garnets imply pressures of 6–6.5 GPa indicating that the Otrøy peridotites were derived from depths > 185 km.
  Mineral-chemical data indicate that the present mineral compositions equilibrated at mantle conditions around 805 ± 40 °C and 3.2 ± 0.2 GPa.
  Estimates of the initial pressure temperature (PT) conditions and PTtime ( t ) path are consistent with a multistage, multiorogenic exhumation history with upwelling of hot asthenosphere up to ≈ 100 km in the Pre-Cambrian followed by subsequent crustal emplacement and exhumation during the Caledonian orogeny.  相似文献   

7.
Helium diffusion in mantle minerals is crucial for understanding mantle structure and the dynamic processes of Earth's degassing.In this paper,we report helium incorporation and the mechanism of its diffusion in perfect crystals of quartz and coesite.The diffusion pathways,activation energies(Ea),and frequency factors of helium under ambient and high pressure conditions were calculated using Density Functional Theory(DFT)and the climbing image nudged elastic band(CI-NEB)method.The calculated diffusive coefficients of He in the quartz in different orientations are:D[100]=1.24×10?6exp.(?26.83 kJ/mol/RT)m2/s D[010]=1.11×10?6exp.(?31.60 kJ/mol/RT)m2/s.and in the coesite:D[100]=3.00×10?7exp.(?33.79 kJ/mol/RT)m2/s D[001]=2.21×10?6exp.(?18.33 kJ/mol/RT)m2/s.The calculated results indicate that diffusivity of helium is anisotropic in both quartz and coesite and that the degree of anisotropy is much more pronounced in coesite.Helium diffusion behavior in coesite under high pressures was investigated.The activation energies increased with pressure:Ea[100]increased from 33.79 kJ/mol to 58.36 kJ/mol,and Ea[001]increased from 18.33 kJ/mol to 48.87 kJ/mol as pressure increased from0 GPa to 12 GPa.Our calculations showed that helium is not be quantitatively retained in silica at typical surface temperatures on Earth,which is consistent with the findings from previous studies.These results have implications for discussion of the Earth's mantle evolution and for recognition thermal histories of ultra-high pressure(UHP)metamorphic terranes.  相似文献   

8.
Earthquake nucleation and fracture propagation in deformed rocks generate elastic waves, within acoustic frequencies. Strain-induced acoustic waves appear both in field tectonic structures and in laboratory samples, thus making laboratory acoustic emission (AE) data from load tests suitable to interpret natural seismic processes. However, laboratory tests are commonly run at room temperature, while the natural rocks at the earthquake origin depths are as hot as hundreds of degrees centigrade. We report AE data for thermally and mechanically loaded granites subjected to impact fracture at different temperatures. The energy distribution in the time series of acoustic signals emitted from fine-grained granite fits a power law of the type of the Gutenberg-Richter relationship at temperatures from 20 to 500 C. Medium- and coarse-grained samples behave in this way only within 300 C but show a Poissonian (random) AE energy distribution above 300 C.  相似文献   

9.
Isobaric volume measurements for MgO were carried out at 2.6, 5.4, and 8.2 GPa in the temperature range 300–1073 K using a DIA-type, large-volume apparatus in conjunction with synchrotron X-ray powder diffraction. Linear fit of the thermal expansion data over the experimental pressure range yields the pressure derivative, (∂α/∂P) T , of −1.04(8) × 10−6 GPa−1 K−1 and the mean zero-pressure thermal expansion α0, T  = 4.09(6) × 10−5 K−1. The α0, T value is in good agreement with results of Suzuki (1975) and Utsumi et al. (1998) over the same temperature range, whereas (∂α/∂P) T is determined for the first time on MgO by direct measurements. The cross-derivative (∂α2/∂PT) cannot be resolved because of large uncertainties associated with the temperature derivative of α at all pressures. The temperature derivative of the bulk modulus, (∂K T/∂T) P , of −0.025(3) GPa K−1, obtained from the measured (∂α/∂P) T value, is in accord with previous findings. Received: 2 April 1999 / Revised, accepted: 22 June 1999  相似文献   

10.
The behavior of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), has been investigated by means of in situ single-crystal synchrotron X-ray diffraction up to 45 GPa. No phase transition or change in the compressional regime has been observed within the pressure-range investigated. The compressional behavior was described with a third-order Birch–Murnaghan equation of state (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are as follows: K V = 158(4) GPa and K V  = 3.3(3). The confidence ellipse at 68.3 % (Δχ2 = 2.30, 1σ) was calculated starting from the variance–covariance matrix of K V and K′ obtained from the III-BM-EoS least-square procedure. The ellipse is elongated with a negative slope, indicating a negative correlation of the parameters K V and K V , with K V = 158 ± 6 GPa and K V  = 3.3 ± 4. A linearized III-BM-EoS was used to obtain the axial-EoS parameters (at room-P), yielding: K(a) = 146(5) GPa [β a = 1/(3K(a)) = 0.00228(6) GPa?1] and K′(a) = 4.6(3) for the a-axis; K(b) = 220(4) GPa [β b = 0.00152(4) GPa?1] and K′(b) = 2.6(3) for the b-axis; K(c) = 132(4) GPa [β c = 0.00252(7) GPa?1] and K′(c) = 3.3(3) for the c-axis. The elastic anisotropy of topaz at room-P can be expressed as: K(a):K(b):K(c) = 1.10:1.67:1.00 (β a:β b:β c = 1.50:1.00:1.66). A series of structure refinements have been performed based on the intensity data collected at high pressure, showing that the P-induced structure evolution at the atomic scale is mainly represented by polyhedral compression along with inter-polyhedral tilting. A comparative analysis of the elastic behavior and P/T-stability of topaz polymorphs and “phase egg” (i.e., AlSiO3OH) is carried out.  相似文献   

11.
《Comptes Rendus Geoscience》2019,351(2-3):236-242
Phonon velocities and densities for Pt were measured based on inelastic X-ray scattering from ambient pressure to 20 GPa in order to independently determine its equation of state (EOS). Phonon velocities were determined with sine dispersion relations. Cij values were obtained by fitting phonon velocities and densities to the Christoffel equation. We found that the obtained Cijs were in good agreement with previously reported Cijs at ambient condition. Based on the Cij values in various conditions, experimental pressures were calculated. The EOS of Pt as a primary pressure scale was determined based on the experimental pressures. We report K’ = 5.17 with fixed KT = 274.1 GPa and V0 = 60.360 Å3 for Vinet EOS. Our scale is in good agreement with several previously published scales based on shock experiments and XRD.  相似文献   

12.
The volcanogenic Kuuspek Formation is a well-defined part of the succession of the Pre-Vendian complexes of the Kokchetav massif (Northern Kazakhstan). The formation is built up of mildly metamorphosed acid lavas, tuffs, and tuffaceous sandstones. At the reference site to the west of the Kokchetav Mountains, the rocks of the Kuuspek Formation compose hinges of small anticlinal folds with sericite-quartz schists of the Late Riphean Sharyk Formation forming the limbs. The Kuuspek Formation lavas are high-alumina rhyolites of high-potassium calc-alkaline series. The U-Pb zircon age of the rhyolites is 1136 ± 4 Ma, thus referring to the Middle Riphean. The Kuuspek rhyolites form the basal part of the Precambrian sedimentary cover of the Kokchetav massif. The cover also comprises schists, limestones, and dolomites of the Sharyk Formation, and quartzites and quartzitic schists of the Late Riphean Kokchetav Formation.  相似文献   

13.
14.
The elastic behaviour and the high-pressure structural evolution of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), have been investigated by means of in situ single-crystal X-ray diffraction up to 10.55(5) GPa. No phase transition has been observed within the pressure range investigated. Unit-cell volume data were fitted with a third-order Birch-Murnaghan Equation of State (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are: V 0=345.57(7) Å3, K T0=164(2) GPa and K′=2.9(4). The axial-EoS parameters are: a 0=4.6634(3) Å, K T0(a)=152(2) GPa, K′(a)=2.8(4) for the a-axis; b 0=8.8349(5) Å, K T0(b)=224(3) GPa, K′(b)=2.6(6) for the b-axis; c 0=8.3875(7) Å, K T0(c)=137(2) GPa, K′(c)=2.9(4) for the c-axis. The magnitude and the orientation of the principal Lagrangian unit-strain ellipsoid were determined. At P−P 0=10.55 GPa, the ratios ε123 are 1.00:1.42:1.56 (with ε1||b, ε2||a, ε3||c and |ε3| > |ε2| > |ε1|). Four structural refinements, performed at 0.0001, 3.14(5), 5.79(5) and 8.39(5) GPa describe the structural evolution in terms of polyhedral distortions.  相似文献   

15.
We report the field, petrographic and mineral chemical characteristics of relict super‐silicic (=majoritic) garnet microstructures from the Otrøy peridotites in the Western Gneiss Region, Norway. The evidence for the former existence of super‐silicic garnet consists of two‐pyroxene exsolution microstructures from garnet. Estimates of the initial composition of the super‐silicic garnet imply pressures of 6–6.5 GPa, indicating that the Otrøy garnet peridotites were derived from depths >185 km. The garnet peridotites consist of inter‐banded variable compositions with c. 50% garnet peridotite and 50% garnet‐free peridotite. Two distinct garnet types were identified: (a) normal matrix garnet, grain‐size ≤4 mm, and (b) large isolated single garnet crystals and/or (polycrystalline) garnet nodules up to 10 cm in size. Large garnet nodules occur only within limited bands within the garnet peridotites. The relicts of super‐silicic garnet were exclusively found in some (not all) of the larger garnet nodules. Petrographic observations revealed that the microstructure of nodular garnet consists of the following four characteristic elements. (1) Individual garnet nodules are polycrystalline, with grain sizes of 2–8 mm. Garnet grain boundaries are straight with well‐defined triple junctions. (2) Some garnet triple junctions and garnet grain boundaries are decorated by interstitial orthopyroxene. (3) Cores of larger polycrystalline garnet contain two‐pyroxene exsolution microstructures. (4) Precipitation‐free rims (2 mm thick) surround garnet cores containing the exsolved pyroxene microstructure. Pyroxene exsolution from super‐silicic garnet was subsequently followed by brittle–ductile deformation of garnet. Both exsolved pyroxene needles and laths become undulous or truncated by fractures. Simultaneous garnet plasticity is indicated by the occurrence of high densities of naturally decorated dislocations. Transmission electron microscopy observations indicate that decoration is due to Ti‐oxide precipitation. Estimates of the P–T conditions for mineral chemical equilibration were obtained from geothermobarometry. The mineral compositions equilibrated at mantle conditions around 805±40 °C and 3.2±0.2 GPa. These P–T estimates correspond to cold continental lithosphere conditions at depths of around 105 km. From a combination of both depth estimates it can be concluded that the microstructural memory of the rock extends backwards to twice as great a depth range as obtained by thermobarometric methods. Available geochronological and geochemical data of Norwegian garnet peridotites suggest a multi‐stage, multi‐orogenic exhumation history.  相似文献   

16.
Compressional wave velocities (VP) at above-solidus temperatures and at 1 GPa were obtained for a granite and amphibolite, which are considered to be major constituents of the continental crust. The temperature variation of velocities showed that the VP values of granite decreased with rising temperature, but substantially increased beyond the melting temperature (850–900 °C). Such an increase may be caused by the α–β transition of quartz. The velocities of amphibolite decreased linearly with increasing temperature and dropped sharply at temperatures above the solidus (700 °C), indicating that partial melting of amphibolite acts to significantly lower the seismic velocities.  相似文献   

17.
18.
The shock compression state of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa (1.5 Mbar) are studied on the basis of the measurements of shock velocities, particle-velocity histories, free surface motions, and electrical conductivities. Zircon transforms, and zirconia probably does, to high pressure phases up to 90 GPa. The shock velocity (U s ) — particle velocity (U p ) Hugoniots can be described as U s =4.38+1.37 U p km/s above 90 GPa for ZrO2, and U s =6.50+0.49 U p km/s (mixed phase region), and U s =1.54+2.30 U p km/s (high pressure phase region) for ZrSiO4. The corrected isothermal densities of the high pressure phase ZrSiO4 are roughly consistent with the isothermal ones of mixtures of ZrO2 and SiO2. Bulk sound velocities in the high-pressure phase region of these oxides are discussed in comparison with other dioxides. Electrical conductivities of these oxides increase from lower than 10?12 S/m to greater than 100 S/m in the shock-stress range up to 70 GPa, and remain as constant values up to higher than 100 GPa.  相似文献   

19.
《Comptes Rendus Geoscience》2019,351(2-3):113-120
A polycrystalline specimen of liebermannite [KAlSi3O8 hollandite] was synthesized at 14.5 GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: I4/m] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13 GPa at room T in a uniaxial split-cylinder apparatus using Al2O3 as a pressure marker. Finite strain analysis of the ultrasonic data yielded KS0 = 145(1) GPa, K0 = 4.9(2), G0 = 92.3(3) GPa, G0 = 1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to VP0 = 8.4(1) km/s, VS0 = 4.9(1) km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.  相似文献   

20.
Equilibrium pressure–temperature (PT) conditions were estimated for kyanite‐bearing eclogite from Nové Dvory, Czech Republic, by using garnet–clinopyroxene thermometry and garnet–clinopyroxene–kyanite–coesite (or quartz) barometry. The estimated PT conditions are 1050–1150 °C, 4.5–4.9 GPa, which are mostly the same as previously estimated values for garnet peridotite from Nové Dvory (~1100–1250 °C, 5–6 GPa). Such very high‐P conditions, which correspond to about 150‐km depth, have been obtained for some garnet peridotites in the Gföhl Unit of the Bohemian Massif, but pressure conditions of eclogites associated with the garnet peridotites have not been so well constrained. This is the first substantial finding of eclogite that gives such very high‐P conditions in the Gföhl Unit of the Bohemian Massif. The Gföhl Unit mainly consists of felsic granulite or migmatitic gneiss, but these rock types do not display high‐P (>2.5 GPa) evidence. It is unclear whether both the peridotite body and surrounding felsic rocks in the Gföhl Unit were buried to very deep levels, but at least some garnet peridotites and associated eclogites in the Gföhl Unit have ascended from about 150‐km depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号